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Abstract
This study analyzes the secular dynamics of two extended bodies inKeplerian orbits, focusing
on tidal effects. It introduces formulas for energy dissipation within each body in a binary
system. The bodies can have a finite number of layers with linear viscoelastic rheology. The
layers must be sufficiently coupled so that the rotation of each layer remains close to the
average rotation of the body. The body is assumed to be in a “viscous regime” (though it may
contain purely elastic layers), meaning that the relaxation times of the rheology are much
shorter than the typical despinning time and deviations from sphericity are caused only by
tidal and centrifugal stresses. The main contribution of this paper is the decomposition of
orbital-averaged equations into a fast–slow system. This reduction allows the slow dynamics
to be represented as sliding along a torque-free curve with occasional jumps at folding
points. This greatly simplifies the analysis of the dynamics as a function of the rheological
parameters.

Keywords Tides · Spin-orbit resonance · Secular evolution · Fast-slow system ·
Viscoelastic rheology

1 Introduction

Newton formulated the lawof gravitation and concluded that themotion of the centers ofmass
of spherical bodies is equivalent to that of point masses. The solution to the resulting two-
body problem, as obtained by Newton, forms the backbone of all subsequent developments
in celestial mechanics. Notably, while planets and major satellites are almost spherical, even
slight deformations caused by spin and tidal forces can significantly influence their rotation
and orbits.

Building on the foundational works of Newton, Laplace, Thomson, Darwin, and others,
a significant advancement in understanding tidal effects on celestial motion was made by
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Kaula (1964), who decomposed tidal forces harmonically in space and time for two bodies in
aKeplerian orbit, using Love numbers to evaluate changes in orbital elements. Recent updates
to Kaula’s theory are available in Boué and Efroimsky (2019), with additional insights in
Efroimsky (2012). Over the last 70 years, extensive research has focused on these tidal effects.
Notable contributions include Ferraz-Mello’s Ferraz-Mello (2013) model, which builds on
Darwin’s theorywith nonspherical hydrostatic states, detailed further in Folonier et al. (2018),
Ferraz-Mello et al. (2020), and summarized in Ferraz-Mello (2019), Ferraz-Mello (2021).
Various studies, including those by Goldreich (1966), Singer (1968), Alexander (1973),
Mignard (1979), Hut (1981), Makarov and Efroimsky (2013), Correia et al. (2014), Ferraz-
Mello (2015), and Boué et al. (2016), have explored deformation equations averaged over
orbital motion, particularly in low- and high-viscosity scenarios. The averaged equations
used in this work are identical to those presented in Correia and Valente (2022).

In this paper, we study the secular–planar dynamics of two extended bodies. We make the
following assumptions:

(1) The two bodies are deformable, nearly spherical at all times;
(2) The spins (or rotation vectors) of the deformable bodies remain perpendicular to the

orbital plane.
(3) The bodies are radially stratified, and each body layer is homogeneous and has a linear

viscoelastic rheology, see, e.g., Sabadini et al. (2016). Fluid layers, if present, must be
sufficiently coupled to the adjacent layers such that the rotation of each layer remains
close to the average rotation of the body.

(4) The bodies are assumed to be in a “viscous regime” (though they may contain purely
elastic layers), meaning that the relaxation times of the rheology aremuch shorter than the
typical despinning time and deviations from sphericity are caused by tidal and centrifugal
stresses.

In this paper,we crucially use that the rheology of a bodywith a finite number of homogeneous
layers is equivalent to that of a homogeneous bodywith a sufficiently more complex rheology
Gevorgyan et al. (2023).

The aim of this study is to analyze the secular dynamics arising from orbital-averaged
equations. In the case of a small body orbiting a larger one, where the despin rate of the small
body is much higher than that of the larger body, the equations can be further simplified.
The main contribution of this work is the decomposition of these simplified equations into
a fast–slow system. This reduction allows the slow dynamics to be represented as sliding
along a torque-free curve with occasional jumps at folding points. This greatly simplifies the
analysis of the dynamics as a function of the rheological parameters.

The equations developed in this paper do not apply to the Sun–Mercury system due to
Mercury’s permanent deformation. However, this system is used as an example for several
reasons:

- Mercury is the only large body in the solar system in a 3:2 spin–orbit resonance. - The
averaged equations can be decoupled into fast (spin) and slow (orbital elements) systems,
simplifying the dynamical analysis. - Mercury may have been in a viscous regime at the
beginning of its history Matsuyama and Nimmo (2009). - Mercury will also serve as a model
for a forthcoming paperwherewewill analyze the transition from a viscous to a solid regime.1

1 By “solid regime,” we mean that some relaxation times of the rheology are much longer than the typical
despinning time, and the body maintains a permanent (or fossil) deformation, remaining slightly aspherical in
the absence of centrifugal and tidal stresses. The intermediate region, where some relaxation times are on the
order of the despinning time, will be referred to as the viscous–solid transition regime.
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The averaging procedure used in this paper is not suitable for treating a body with perma-
nent deformation (solid regime), as discussed in Sect. 2.12.

In the most widely adopted mechanism for spin–orbit resonance Goldreich and Peale
(1966), the probability of Mercury being captured into a particular spin–orbit resonance
depends on the permanent deformation of the planetary figure. Larger deformations are
needed to make capture likely. Here, Mercury is not assumed to have any permanent defor-
mation. Deformations are the consequences of tides and centrifugal stresses. In our approach,
the current 3:2 spin–orbit resonance of Mercury is a transient state that, without any other
external influence, can last billions of years until a rapid spin transition occurs, ultimately
resulting in Mercury entering a 1:1 spin–orbit resonance state.

In this paper, we show that the probability of the hypothetical viscous Mercury being
captured into a 3:2 spin–orbit resonance depends strongly on the rheological parameters.
This conclusion, which may be applicable to any binary system and not just the Mercury–
Sun system, highlights the importance of employing more complex and realistic rheologies
in understanding spin–orbit evolution.

Our findings align with those in Makarov (2012) and Noyelles et al. (2014), where the
permanent deformation ofMercury is considered. According to the abstract of Noyelles et al.
(2014):

“As opposed to the commonly used constant time lag (CTL) and constant phase lag (CPL)
models, the physics-based tidal model changes dramatically the statistics of the possible final
spin states.”

In this context, the term “physics-based tidal model” refers to a model derived from a
rheology with several relaxation times.

We remark that the past capture of Mercury into its current spin–orbit state has been
the subject of several previous studies. In our paper, we have completely neglected several
important effects that may have been significant, as pointed out in Noyelles et al. (2014):
perturbations by other bodies in the Solar System that induce variations in Mercury’s eccen-
tricity, the potential relevance of core–mantle–boundary friction at fluid–solid interfaces, the
possibility of past impacts with other bodies, existence of a permanent deformation, and
changes in the rheology over long timescales. Therefore, our quantitative results regarding
the spin–orbit history of Mercury are not intended to describe what actually happened.

In the next section, we present the main results of the paper. The appendices provide
several mathematical details involved in deriving these results.

2 Main results

The foundational equations for the orbit and rotation of an extended body are well established
in the literature. Various equations detailing the deformation of extended bodies exist. In a
companion paper Ragazzo and dos Santos (2024), we averaged the equations provided in
Ragazzo and Ruiz (2017) with respect to the orbital motion, excluding the term accounting
for the inertia of deformations as discussed in Correia et al. (2018). These equations are
applicable to any rheological model. We obtained essentially the same averaged equations
as those presented in Correia and Valente (2022). The only difference is the inclusion of
a centrifugal deformation term, which is not relevant in the planar case. It is important to
emphasize that the averaged equations in Correia and Valente (2022) are more general as
they do not necessitate the spins of the bodies to be perpendicular to the orbital plane.
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Let mα and m represent the masses of two celestial bodies, which could be a planet and
a star, or a planet and a satellite. We name the bodies such that the “α body” is the largest
mα ≥ m. The quantities of the large body will always be labeled with an index α and those
of the small body will have no label.

We assume that both bodies are almost spherical, deformable, and the deformations are
volume preserving. In this situation, the mean moments of inertia, denoted as I◦ and I◦α ,
remain constant in time, a result attributed to Darwin (Rochester and Smylie 1974).

The motion of the two-body system is determined by three sets of equations: the equations
for the relative positions of the centers of mass (orbit), the equations for the rotation of each
body about their centers of mass (spin), and the equations for the deformation of each body.
In Appendix A, we present these fundamental equations.

2.1 Rheology and Love numbers

The tidal response of a stratified body and the corresponding Love number k2(σ ), where σ is
the angular frequency of the tidal force, can be determined by solving the mass conservation,
momentum conservation, and Poisson equations. Each layer is assumed to be either solid
with linear viscoelastic rheology or liquid and inviscid. Viscoelastic layers are modeled with
Maxwell rheology, characterized by an elastic shear modulus and viscosity. Liquid layers
are treated as viscoelastic layers with a shear modulus approaching zero. As discussed in
Sabadini et al. (2016), the Love number can be expressed as a sum of partial fractions, each
with a finite number of terms, characterized by an amplitude and a relaxation time.

According to Bland (1960), any linear viscoelastic rheology with a finite number of
relaxation times can be represented by a generalized Voigt rheology. The spring–dashpot
representation of this is shown in Fig. 1. Specifically, a generalized Voigt model can be con-
structed with the same relaxation times and amplitudes as those in the Love number of the
stratified body.

This generalized Voigt model, along with the association principle in Ragazzo and Ruiz
(2017), implies the existence of a hypothetical homogeneous bodywith the sameLovenumber
as the layered body.

This construction is detailed in Gevorgyan et al. (2023), where it is shown that the Love
number of either the stratified or the equivalent homogeneous body, after partial fraction
expansion, can be written as:

k2(σ ) = k∞ + (k◦ − k∞)

(
h1

1 + iτ1σ
+ · · · + hn+1

1 + iτn+1σ

)
. (2.1)

In these equations:

• The number of relaxation times in the Love number of the stratified body is n+ 1, which
is only indirectly related to the number of layers in the body Sabadini et al. (2016).
Typically, the number of layers is much smaller than the number of relaxation times.

• k∞ := limσ→∞ k2(σ ) is the asymptotic value of the Love number at high frequencies.
• k◦ := k2(0) is the Love number at frequency zero, also called secular Love number2.
• τi is the ith characteristic time of the rheology.

2 The softest possible body is one composed of a perfect fluid, which is held together solely by self-gravity.
In this case, k◦ = k f , where k f is the fluid Love number. Let R be the body volumetric radius and RI be the
radius of inertia, defined as the radius of a homogeneous sphere of massm andmoment of inertia I◦. Assuming
that the density is nondecreasing toward the center, the following approximation (valid for0.2 < I◦

mR2
≤ 0.4)
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Fig. 1 Generalized Voigt model. The constant γ (blue) represents self-gravity rigidity

Fig. 2 ABOVE: Generalized Voigt model in Bland (1960) Figure 1.8. BELOW: Generalized Maxwell model
Bland (1960) Figure 1.9

• hi > 0 is the relative amplitude of the ith mode of the rheology, which is associated to
the characteristic time τi . The relative amplitudes add to one:

h1 + h2 + · · · hn+1 = 1.

All the simple rheological models used in the literature, such as Maxwell, Kelvin–Voigt,
standard anelastic solid (SAS), Burgers, Bland’s generalizedVoigt (Fig. 2 above), andBland’s
generalizedMaxwell (Fig. 2 BELOW), are particular cases of the generalized Voigt rheology
depicted in Fig. 1. The Andrademodel and the Sundberg–Cooper model can be approximated
with arbitrary precision by a generalized Voigt model, as demonstrated in Gevorgyan et al.
(2020) and Gevorgyan (2021), respectively.

Footnote 2 continued
holds (Ragazzo 2020, Eqs. 1.2 and 1.8, Theorems 4.1 and 4.2):

k f ≈ 3

2

(
RI

R

)5
where R2

I := 5

2

I◦
m

. (2.2)

Themaximum value of RI /R is one, achieved in a homogeneous body, for which k f = 3
2 . The approximation

in equation (2.2) was also proposed in Consorzi et al. (2023).
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2.2 Passive deformation

Let κ := {e1, e2, e3} be an inertial orthonormal frame with origin at the center of mass of the
system. The orbit is contained in the plane {e1, e2}.

The moment of inertia matrix I of a body in κ can be written as:

I = I◦
(
1 − b

)
, (2.3)

where 1 is the identity and b is a symmetric and traceless matrix. We denote matrices and
vectors in bold face. The matrix b is termed the deformation matrix. The deformation matrix
of the α-body is denoted as bα .

Since the bodies are nearly spherical and tidal deformations are minor, the variations in
orbital elements occur gradually. As a result, the tidal forces can be approximated by those
of point masses undergoing Keplerian motion. Within this framework, tidal forces can be
harmonically decomposed both temporally, using Hansen coefficients (see Appendix F), and
spatially, using spherical harmonics.

In Appendix B, we employ these decompositions to compute the “passive deformation
matrix” in terms of Love numbers, orbital eccentricity, mean motion (n = Ṁ), and the spin
angular velocities (ω and ωα) of each body. The term “passive” refers to the fact that this
deformation is computed while neglecting its influence on altering the orbital elements and
the spin of each body.

2.3 Frames of reference and the average angular velocity of the principal axes

One of the main issues in the dynamics of deformable bodies is the choice of a “body frame,”
specifically amoving frame that is either unambiguously defined (the principal axes of inertia)
or in which the body is as stationary as possible (the Tisserand mean axis).

A Tisserand frameK has its origin at the center ofmass of the body and an angular velocity
relative to the inertial frame such that the angular momentum of the body with respect to K
is null (see Appendix A). In this paper by the spin of a body, we mean the angular velocity
of its Tisserand frame.

Another useful frame is the one determined by the principal axes of inertia, denoted as Kp .
This frame describes the average mass distribution of the deformed body and the resulting
gravitational field due to deformation. For Kp to be unambiguously defined, the body must
always have three distinct axes of inertia, which is always the case in the situation considered
in this paper.

For a given passive deformation characterized by (ω, e, n), the orientation of Kp with
respect to the inertial frame κ is determined by a single angle ψ of rotation about the e3 axis.
We define the average angular velocity of the principal axes of inertia as:

ωp(ω, e, n) := lim
t→∞

ψ(t)

t
. (2.4)

In Appendix C, we show that the average angular velocity of the principal axes is always
equal to the mean motion n:

ωp = n. (2.5)

This is an expected result if the body is in the viscous regime, as all deformations result
from centrifugal and tidal forces, with triaxiality determined by the companion body. As can
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be verified in Appendix C, the mathematical derivation of this property from the expression
of the passive deformations is not obvious.

Thus, in the viscous regime, the principal axes are always in a one-to-one resonance with
the mean motion. The torque, which depends on the geometry and not on the fluid velocity,
is very different from the torque in the solid regime. In the solid regime, the principal axes
generally move with angular velocities different from the mean motion.

2.4 Energy and angular momentum

The energy function of a system of two rigid spherical bodies is

E◦ := −Gmmα

2a
+ I◦

ω2

2
+ I◦α

ω2
α

2
= −a1n

2/3 + I◦
ω2

2
+ I◦α

ω2
α

2
, (2.6)

where G is the gravitational constant, a is the semi-major axis, and

a1 := mmαG2/3

(m + mα)1/3
. (2.7)

The angular momentum of a spherical body is 	s = I◦ω, and the orbital angular momentum
is

	 = mmα

m + mα

a2n
√
1 − e2 = a1n

−1/3
√
1 − e2. (2.8)

The total angular momentum of a system of two spherical bodies is

	T := 	 + 	s + 	sα. (2.9)

We will assume that 	 > 0 (or n > 0) and 	T > 0 for all time.
The energy and angular momentum of a system of two slightly deformable bodies, which

are given in Appendix A, are approximately given by the expressions of their spherical
approximations.

The total angular momentum is constant, 	̇T = 0, and within the Lagrangian formalism
with dissipation function Ragazzo and Ruiz (2017), the time derivative of the energy is given
by the sum of the dissipation functions of each body D and Dα .

In Appendix D, we use the passive deformations to estimate the average dissipation of
energy in each body. For the small body, the result is:

〈D〉 = −3

8

(
mα

m + mα

)2 n4R5

G

∞∑
k=−∞

{
kn

3

(
X−3,0
k (e)

)2
Im k2(kn)

+ (kn − 2ω)
(
X−3,2
k (e)

)2
Im k2(kn − 2ω)

}
.

(2.10)

A similar expression holds for the α-body.
In Appendix F, we explain how to evaluate the accuracy of partial sums of this series after

truncation in the eccentricity.
Since Im k2(−σ) = −Im k2(σ ) and Im k2(σ ) < 0 for σ > 0, then 〈D〉 ≥ 0. If e = 0,

then X−3,0
k (0) = 0 for k ∈ Z and X−3,2

k (0) = 0 for k �= 2. So 〈D〉 = 0 if and only if e = 0
and n = ω.
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The energy dissipated due to passive deformations must originate from the motion of the
spherical bodies that induce these passive deformations. Consequently, we can infer

Ė◦ = −2

3
a1n

−1/3ṅ + I◦ωω̇ + I◦αωαω̇α

= −2〈D〉 − 2〈Dα〉.
(2.11)

2.5 The average torque and the secular equation for the orbital elements

For the small body, the average torque due to passive deformations is:

〈T〉 = −3

2

(
mα

m + mα

)2 n4R5

G

{ ∞∑
k=−∞

(
X−3,2
k

)2
Im k2(kn − 2ω)

}
. (2.12)

A similar expression holds for the α-body.
The secular equation for the orbital elements can be readily derived from Eqs. (2.10),

(2.11), (2.12), and their counterparts for the α-body:

ω̇ = 1

I◦
〈T〉,

ω̇α = 1

I◦α

〈Tα〉,

ṅ = 3n1/3

2a1

(
2〈D〉 + 2〈Dα〉 + ω〈T〉 + ωα〈Tα〉

)
.

(2.13)

The conservation of total angular momentum, combined with Eqs. (2.8) and (2.9), implies
that the eccentricity, which is featured on the right-hand side of Eq. (2.13), can be expressed
in terms of the state variables ω,ωα, n.

2.6 Timescales and a simplification whenm � m˛

The despin rate is dependent on the imaginary parts of the Love numbers. The largest bodies
in the solar system are fluid (e.g., the Sun, Jupiter, etc.) and have an imaginary part of the Love
number that is significantly smaller than that of bodies with solid components. Therefore, it
is reasonable to assume in the subsequent equations that Im k2 and Im k2α are comparable or
Im k2 � Im k2α .

The ratio between the despin rates, assuming no spin–orbit resonances, is given by

ω̇

ω̇α

≈ I◦α

I◦
m2

α

m2

R5

R5
α

Im k2
Im k2α

≈ ρα

ρ

m2
α

m2

Im k2
Im k2α

, (2.14)

where ρ represents the density of the body. If mα � m, then ω̇ � ω̇α , indicating that the
despin rate of the larger body is significantly slower than that of the smaller body. In such a
case, as a first approximation, we may assume ωα =constant and Eq. (2.13) becomes:

ω̇ = 1

I◦
〈T〉,

ṅ = 3n1/3

2a1

(
2〈D〉 + 2〈Dα〉 + ω〈T〉

)
.

(2.15)
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For example, for the Sun–Mercury system, using −Im k2α ≈ 3.5 × 10−8 Ogilvie (2014)
and −Im k2 ≈ 0.011 (Baland et al. 2017, p. 152), we obtain ω̇

ω̇α
≈ 6 × 1017.

2.7 A simplification when the˛ body is fluid (almost inviscid)

The ratio of the energy dissipation rates in each body is given by

〈D〉
〈Dα〉 ≈ m2

α

m2

R5

R5
α

Im k2
Im k2α

≈ ρ2
α

ρ2

Rα

R

Im k2
Im k2α

. (2.16)

Equation (2.16), along with the equation for ṅ in (2.15), implies that depending on the
imaginary parts of the Love numbers, the larger body may play a more significant role than
the smaller body in altering the orbital elements3.

However, when the α body consists of a low-viscosity fluid and the smaller body includes
a solid part, then Im k2

Im k2α
� 1, and 〈D〉

〈Dα〉 may also be significantly greater than one. This

scenario applies to the Sun–Mercury system, where 〈D〉
〈Dα〉 ≈ 2.8 × 106. In such cases, 〈Dα〉

can be neglected in comparison to 〈D〉 in the equation for ṅ in (2.15).
Therefore, for the Sun–Mercury system, we can employ the following approximation to

Eq. (2.13):

ω̇ = 1

I◦
〈T〉,

ṅ = 3n1/3

2a1

(
2〈D〉 + ω〈T〉

)
,

(2.18)

where the state variables are (ω, n). This type of equation commonly appears in the literature,
as seen in references such asCorreia et al. (2014),Gomes et al. (2019), andCorreia andValente
(2022).

The angular momentum, which remains constant along the motion, becomes simpler:

	T = a1n
−1/3

√
1 − e2 + I◦ω. (2.19)

Equations (2.18) are equivalent to those obtained in Correia and Valente (2022) in the
planar case.

2.8 The slow–fast dynamics when I◦
ma2 � 1

In the remainder of this section, we consider the simplest case where Eq. (2.18) is applicable,
with m 
 mα and |Im k2α| 
 |Im k2|.

3 For the Earth–Moon system, using the Love number k2α = 0.2817 − 0.02324 i for the Earth (Ragazzo
and Ruiz 2017, Table 3, semidiurnal frequency), and Im k2 =-5.13 × 10−4 for the Moon (orbital frequency)
Fienga et al. (2019), we obtain

〈D〉
〈Dα〉 ≈ m2

αR
5 Im k2

m2R5
α Im k2α

= 0.022. (2.17)

This indicates that the Earth’s influence on altering the orbital parameters is greater than that of the Moon.
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The ratio

ṅ

ω̇
= I◦n4/3

a1

3ω

2n

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
1 +

1

2ω

{ ∞∑
k=−∞

kn

3

(
X−3,0
k (e)

)2
Im k2(kn) + · · ·

}

∞∑
k=−∞

(
X−3,2
k

)2
Im k2(kn − 2ω)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.20)

includes the factor

I◦n4/3

a1
= 1

m

(
1 + m

mα

)
I◦
a2

≈ I◦
ma2

. (2.21)

We assume

I◦n4/3

a1
≈ I◦

ma2

 1. (2.22)

For the Sun–Mercury system,

I◦n4/3

a1
= 6.2 × 10−10. (2.23)

In this case, if
∣∣ω
n

∣∣ is not far from one and (n, ω) is not on

C :=
{
(n, ω) :

∞∑
k=−∞

(
X−3,2
k (e)

)2
Im k2(kn − 2ω) = 0

}
(torque-free curve), (2.24)

then ω̇
ṅ � 1. As a result, the spin–orbit dynamics is governed by a slow–fast system of

equations, where n is the slow variable and ω is the fast variable. The typical dynamics is
described in the caption of Fig. 3.

Due to inequality (2.22), Eq. (2.19) can be simplified to

	T

n I◦
= a1

I◦n4/3
√
1 − e2 + ω

n
≈ a1

I◦n4/3
√
1 − e2, (2.25)

where we have used that
∣∣ω
n

∣∣ is not far from one and e is not close to one. This leads to the
approximation

e ≈
√√√√1 −

(
	3T

a31
n

)2/3

. (2.26)

The constant
	3T
a31

has the unit of time. (For the Sun–Mercury system,
	3T
a31

= 13.1224 days4.)

We use this constant to define the nondimensional mean motion ν and spin angular velocity
w, which are used in Fig. 3:

ν := 	3T

a31
n w := 	3T

a31
ω. (2.27)

4 2π
	3T
a31

= 82.45 days is approximately the period of the longest possible synchronous, ω = n, circular orbit

of Mercury about the Sun.
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Fig. 3 Typical dynamics when ma2
I◦ � 1. We use the nondimensional mean motion ν = 	3T

a31
n and the

nondimensional spin angular velocity w = 	3T
a31

ω in the plot, as seen in Eq. (2.27) and the previous paragraphs.

The curve in black represents the torque-free curve C: ẇ < 0 above C, ẇ > 0 below C, and ẇ = 0 on C.
A solution whose initial condition is above C converges rapidly to C with a decreasing spin velocity, while
a solution whose initial condition is below C converges rapidly to C with an increasing spin velocity. Upon
reaching C, the solution gradually progresses along C. The decrease in energy implies that ν increases along C
(with e decreasing). The motion along C is sustainable up to a fold point. At this point, the decrease in energy
forces the solution to depart from C, resulting in a spin jump. The solution is then drawn toward another point
on C, representing a lower-order spin–orbit resonance. Eventually, the solution approaches the synchronous
solution (ν,w) ≈ (1, 1). For a general discussion on the flow close to C, see Ragazzo and dos Santos (2024)

2.9 Mercury’s Love number

Mercury is not in hydrostatic equilibrium: The expected hydrostatic flattening is two orders
of magnitude lower than the observed flattening. Therefore, the theory in this paper for bodies
in the viscous regime is not valid for the current state of Mercury5.

Our goal in the following sections is to demonstrate how variations in the rheological
parameters impact the capture by spin–orbit resonances, rather than to explain Mercury’s
actual history. To simplify our analysis, we will use the current Love number of Mercury at
its orbital frequency to constrain the rheological parameters.

For Mercury, at the orbital frequency

nmer = 2π

87.969 days
, (2.28)

5 However, for its first 0.2 Gyr, Mercury was presumed hot and in the viscous regime (see Matsuyama and
Nimmo (2009) paragraph [61]). According to Breuer et al. (2007), the lithospheric thickness reached roughly
150km at the end of this period. This suggests the presence of secular elastic rigidity, represented by α0 > 0
in Fig. 1, in conjunction with self-gravity, such that k◦ < k f , where k f denotes the fluid Love number.
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current estimates of the Love number fall within the range 0.53 < Re k2 < 0.63, with
the preferred value being k2 = 0.569 Genova et al. (2019), Goossens et al. (2022), and
0 < −Im k2 < 0.025 (Baland et al. 2017, p. 152) (Steinbrügge et al. 2018, p.2767 and
2769). We will assume

kR := Re k2 = 0.57 and kI := Im k2 = −0.011 (2.29)

as reference values (quality factor Q ≈ −Re k2
Im k2

≈ 52).
We will consider k◦ as a free parameter. It can vary either as a consequence of changes

in the mean moment of inertia I◦ (according to Eq. (2.2)) or due to the presence of a purely
elastic layer. In the absence of inertia of deformation, the real part of the Love number
decreases with the frequency Correia et al. (2018). Equation (2.2) implies that k f = 1.04,
and therefore,

0.57 = kR < k◦ ≤ k f = 1.04. (2.30)

2.10 Mercury with one relaxation time

The generalized Voigt model with a single relaxation time is represented by a spring–dashpot
model shown in Fig. 1 with n = 0. This is the rheology of the commonly called standard
linear solid. The Love number is described by Eq. (2.1) with n = 0:

k2(σ ) = k∞ + (k◦ − k∞).
1

1 + iτσ
. (2.31)

We impose k2(nmer) = 0.57 − 0.011i and find that only one parameter among the three
k∞, k◦, and τ can vary freely.

We will first illustrate the enlargement of the basin of attraction of Mercury’s current state
under the variation of the parameter k◦. By “basin of attraction,” we mean the entire set of
past states that are mapped into a small region centered at Mercury’s current state. Since the
timescale for significant motion along the torque-free curve is on the order of billions of years
and Mercury has existed for at most 5 billion years, all past states beyond 5 billion years that
are in the basin of attraction of Mercury’s current state are not physically realizable.

In Fig. 4 LEFT panel, we show the torque-free curve for k◦ = 0.8. The current state of
Mercury is covered by part of the torque-free curve close to the resonance line ω

n = 2. This
implies that Mercury must have been captured directly into the 3:2 spin–orbit resonance,
without prior transitions through higher-order resonances.

In Fig. 4 RIGHT panel, we show the torque-free curve for k◦ = 0.7, which implies
k∞ = 0.5691 and τnmer = 11.89. In this scenario, the current state of Mercury suggests that
it could have been captured in a higher-order resonance before settling into the 3:2 spin–orbit
resonance. The potential initial states of Mercury that lead to its current state, as indicated
by the region hatched with vertical lines in the RIGHT panel, encompass a much larger set
than the corresponding region in the LEFT panel.

Wewill say that the state ofMercury is covered by the resonance ω
n = 2 when the situation

in Fig. 4 LEFT holds and not covered when the situation in Fig. 4 RIGHT holds. If Mercury’s
current state is covered by the resonance ω

n = 2, then its basin of attraction is small otherwise
it is large, as show by the hatched regions in Fig. 4.

The phenomenon of the enlargement of the basin of attraction of Mercury’s current state
occurs in the same way as in the case of two relaxation times.
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Fig. 4 LEFT: Torque-free curve (green) for Mercury with k◦ = 0.8, k∞ = 0.5695, and one relaxation time:
τnmerc = 20.91. Two spin–orbit resonance lines (horizontal dashed) are shown. Mercury is currently on the
3n = 2ω resonance line, and its meanmotion is normalized to one, represented by the vertical dashed line. The
region hatched with vertical black lines represents potential initial positions of Mercury that could have led to
its current state. In this case, we say that the resonance ω

n = 2 covers Mercury’s state. RIGHT: Torque-free
curve (orange) for Mercury with k◦ = 0.7 and one relaxation time: τnmer = 11.82. The remainder of the
notation is the same as that in the left panel. In this case, we say that the resonance ω

n = 2 does not cover
Mercury’s state

The effect of varying k◦ on the shape of the torque-free curve is shown in Fig. 5. Given
that k2(nmer) = 0.57 − 0.011i , we have:

τnmer = k◦ − kR
−kI

= k◦ − 0.57

0.011
(2.32)

and

k∞ = −0.011 + 0.57τnmer

τnmer
. (2.33)

2.11 Mercury with two relaxation times

The generalized Voigt model with two relaxation times is represented by a spring–dashpot
model shown in Fig. 1 with n = 1. This rheology is commonly called Burgers rheology.

In this case, Eq. (2.1) implies

kR + kI i = k∞ + (k◦ − k∞)

(
h1

1 + iτ1nmer
+ h2

1 + iτ2nmer

)
, (2.34)

where kR = 0.57, kI = −0.011, τ1 < τ2, and h2 = 1 − h1.
We will consider k◦, τ1, and τ2 as free parameters.
As shown in Appendix E, the requirement 0 < h1 < 1 implies

τ1 < τc < τ2, (2.35)
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Fig. 5 Torque-free curves for the
rheology with a single relaxation
time τ (standard linear solid).
The dependence of τ on k◦ is
given in Eq. (2.32). The value
k◦ = 0.746 is critical for the
enlargement of the basin of
attraction of Mercury’s current
state. For k◦ > 0.746, the basin
of attraction is small, and for
k◦ < 0.746, it is large, as shown
in Fig. 4 and discussed in the text

where

nmerτc := k◦ − kR
−kI

= k◦ − 0.57

0.011
(2.36)

is the value of τ in the single-relaxation-time case for given (kR, kI , k◦), as shown in Eq.
(2.32). Moreover, if τ2 is fixed, then

lim
τ1→τc

h1(τ1, τ2) = 1 ⇒ h2 → 0, (2.37)

returning us to the single-relaxation-time situation.
In Figs. 6 and 7, we show the torque-free curve for nmerτ2 = 2011.6, several values of

nmerτ1 < nmerτc, and k◦ = 0.9 and k◦ = 0.7, respectively. The most distinct feature of the
torque-free curve in this case, compared to the single-relaxation-time case, is the appearance
of an extra fold close to the resonance lines, as detailed in theRIGHTpanel of Fig. 6. This extra
fold disappears as τ1 → τc, and in this limit, the torque-free curve of the two-relaxation-time
rheology becomes the torque-free curve of the single-relaxation-time case.

Another difference between the one-relaxation-time and the two-relaxation-time cases is
that the range of values of k◦ for which the current state of Mercury is not covered by the
resonance ω

n = 2 is larger in the latter. For instance, in Fig. 6, there is a set of values of
τ1 for which the state of Mercury is not covered, indicating a large basin of attraction, and
the remaining values of τ1 such that the state of Mercury is covered, with a respective small
basin. The upper tongue of the torque-free curves covers Mercury’s state for smaller values
of τ1 while the lower tongue covers it for larger values of τ1.

Figure 8 illustrates the sensitivity of the basin of attraction of Mercury’s current state
to variations in k◦. For k◦ = 0.8 and k◦ = 0.9, we present the parameter values in the
(τ1, τ2) space where the current state of Mercury is either covered ( small basin of attraction
of the current state of Mercury) or not covered by the resonance ω

n = 4
2 ( large basin of

attraction of the current state of Mercury). The regions where the current state is covered are
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Fig. 6 Torque-free curves for the rheology (Burgers) with two relaxation times for k◦ = 0.9, nmerτ2 = 2011.6,
and some values of nmerτ1 < nmerτc = 20.9. The right panel shows the details close to the resonance ω

n = 2

Fig. 7 Torque-free curves for the
rheology (Burgers) with two
relaxation times for k◦ = 0.7,
nmerτ2 = 2011.6, and several
values of nmerτ1 < nmerτc
= 11.8

indicated in red, and the regions where it is not covered are indicated in blue. In both cases,
for a sufficiently large fixed value of τ2, there are two red intervals of τ1. Different parts of
the torque-free curve cover the current state of Mercury in each one of these intervals, as
illustrated by the three curves in Fig. 6.
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Fig. 8 Regions in the (τ1, τ2) space where the current state of Mercury is covered (red) or not (blue) by the
resonance ω

n = 4
2 . In the ABOVE panel, k◦ = 0.8, and in the BELOW panel, k◦ = 0.9

Table 1 Exact values of ω/nmer for which the average torque in Fig. 5 is zero at n = nmer

k◦ 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0

τnmer 7.3 11.8 16.4 20.9 25.5 30.0 34.5 39.1

ω/nmer 1.4835 1.4941 1.4969 1.4981 1.4987 1.4991 1.4993 1.4995

2.12 One very large relaxation time: consequences and breakdown of the averaging
procedure

The spin state of the hypothetical Mercury considered in this paper, after a relatively fast
transient, settles on the torque-free curve. As shown in Fig. 5 and more precisely in Table 1,
for a rheologywith a single relaxation time, the values ofω/nmer for the hypotheticalMercury
are always below ω/n = 3/2. However, as τ increases, ω/nmer approaches 3/2.

The same phenomenon occurs for a rheology with two relaxation times. If we fix all
rheological parameters except τ2, the value of ω/nmer on the torque-free curve gets closer to
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3/2 as τ2 increases. For example, for a rheology with two relaxation times, with k◦ = 0.9,
nmerτ1 = 0.03, τ2 = τ1 × 106, and the other parameters determined as in Sect. 2.11, the
average torque is zero at ω/nmer = 1.5− 8.7× 10−7, which is very close to, but still below,
the observed value.

The reason for the torque-free value of ω/nmer being always below the 3/2 was explained
to us by M. Efroimsky: “the root of the torque-free curve (in Fig. 9a, b) is slightly displaced
from ω

nmer
= 3

2 to the left because the kink is superimposed with a vertical bias coming from
the tail of the diurnal kink.” This is clearly shown in Fig. 9c, which is a blow-up of Fig. 9b at

ω
nmer

= 3
2
6.

The dashed black curve, T3
2
, in Fig. 9 (c) is the graph of the kink associated with the

resonance ω
nmer

= 3
2 , which corresponds to the term k = 3 in the average torque in Eq.

(2.12):

T3
2

= −3

2

(
mα

m + mα

)2 n4R5

G

{(
X−3,2
3

)2
Im k2(3n − 2ω)

}
. (2.38)

The “diurnal kink” is the term corresponding to k = 2:

T1 = −3

2

(
mα

m + mα

)2 n4R5

G

{(
X−3,2
2

)2
Im k2(2n − 2ω)

}
. (2.39)

The tail of the diurnal kink at ω
nmer

= 3
2 is negative and displaces the kink associated with

k = 3, as shown by the dashed red curve in Fig. 9c.
Figure 7 clearly shows that for large values of τ2nmer, the torque-free curve becomes

almost constant at the values 3/2 and 2, and this also occurs for other half-integers. Bodies
with permanent deformations, like the actual Mercury, have spin–orbit resonances exactly at
half-integers. This suggests that for very large τ2nmer, the rheological behavior of bodies in
the viscous regime becomes closer to that of bodies in the solid regime. Although this claim
is correct and was used in Ragazzo et al. (2022) to define the “prestress frame,” the averaging
method applied in this paper cannot be used in this situation.

The reason for the breakdown of the averaging procedure is as follows. The averaging
method relies on the fact that the typical variation rate of the spinω and orbital elements (e, n)

is small compared to the typical variation rate of the deformation variables. This allows for
the computation of the deformation for frozen values of (ω, e, n) (the passive deformations).
These passive deformations are then used to average the equations for (ω, e, n). However,
when one of the relaxation times is not much smaller than the characteristic despinning time,
the perturbative scheme used in this paper breaks down.

For Mercury, an estimate of the despin time, defined as (Noyelles et al. 2014, Eq. 20)

τdespin = |ω|
|ω̇| =

∣∣∣∣ω I◦
〈T 〉

∣∣∣∣ ,
can be obtained using Eq. (2.12). The result is of the same order as that reported in (Noyelles
et al. 2014, Section 5), approximately 10Myr. The value of τ2nmer = 0.03×106nmer = 1150
yr used above to obtain the torque-free value ω/nmer = 1.5 − 8.7 × 10−7 is approximately
10−4τdespin for Mercury.

There are two pieces of evidence indicating the unsuitability of the averagingmethod used
in this paper when τ2nmer is large. First, although ω/nmer ≈ 3/2 for arbitrarily large τ2nmer,

6 Our Fig. 9 is essentially the same as Figure 5 inMakarov et al. (2012) and Figure 3 inMakarov and Efroimsky
(2013)
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Fig. 9 Three graphs of ω̇ = 〈T 〉
I◦ divided by the constant (k◦−k∞)

3n4merR
5

2G I◦ are presented as a function of ω
nmer

for n = nmer fixed. a Rheology has a single relaxation time: nmerτ = 11.89, k◦ = 0.7, and k∞ = 0.5691.
ω̇ = 0 for ω/nmer = 1.49413. b Rheology with two relaxation times: nmerτ1 = 0.03, nmerτ20.03 × 106,
h1 = 0.52654, k◦ = 0.9, and k∞ = 0.2033. ω̇ = 0 for ω/nmer = 1.5−8.7×10−7. c is detail of bwhere the

full blue curve is the graph of the complete torque, including all terms, and the black dashed
(
T 3
2

)
and red

dashed
(
T3
2

+ T1
)
curves are two approximations, see text for explanations. The curve T 3

2
has a zero exactly

at ω
nmer

= 1.5

the principal axes of inertia still have an average angular speed ofωp = n (see Sect. 2.3). This
is clearly in contradiction with what is expected in the solid regime, as in Mercury, where
the spin–orbit resonance is between the rotation rate of the principal axes of inertia and the
mean motion.7

A second piece of evidence comes fromFig.7, where we observe a pinch in the torque-free
curve along the values ω/n = 3/2 and ω/n = 2. The space between the upper and lower
branches of the torque-free curve at ω/n = 3/2 is so small that a minor perturbation can
move the state from above the upper branch to below the lower branch, causing it to move
toward the resonance at ω/n = 1. As τ2 increases, this pinch becomes more pronounced.

2.13 Conclusion

In this paper, we have derived equations for the secular evolution of spin and orbit due to
tidal effects using energy arguments. The body is assumed to be in a viscous regime, where
the lack of sphericity is only due to centrifugal and tidal forces, and the body does not have
any permanent deformation. The body’s rheology can be quite general. The equations were
originally obtained by other authors, notably in Correia and Valente (2022).

7 Note: Mercury likely has a liquid core. Is it possible that the fluid in the core has a slightly different average
velocity from that of the mantle? In this case, the average velocity of the Tisserand frame could be slightly
displaced from the exact resonance value of 3/2. However, the principal axes of inertia would still be in perfect
3:2 resonance.
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In many cases, such as for Mercury, which served as a model in our study, the equations
can be further simplified. A major contribution of this paper is the decomposition of these
simplified equations into a fast–slow system. This reduction allows the slow dynamics to be
represented as sliding along the torque-free curve with occasional jumps at folding points.
This greatly simplifies the analysis of the dynamics as a functionof the rheological parameters.

Finally, we emphasize that the averaged equations obtained in this paper fail when one of
the relaxation times is not much smaller than the typical despin time. As one of the relaxation
times tends to infinity, the body transitions from a viscous regime to a solid regime, where
permanent deformation is likely to appear. The analysis of this limit will be addressed in a
forthcoming paper.

A The fundamental equations

Let x be the vector in the inertial frame κ from the center of mass of the small body to the
body α. The equation for the orbital motion is

ẍ = G(mα + m)

{
− x

|x|3 − 15

2

1

|x |7
((

I◦α

mα

bα + I◦
m
b
)
x · x

)
x

+ 3
1

|x|5
(
I◦α

mα

bα + I◦
m
b
)
x
}
,

(A.40)

where the deformation matrix of the small body b, defined in Eq. (2.3), is given by

b =
⎛
⎝ b11 b12 0
b12 b22 0
0 0 b33

⎞
⎠ , with b33 = −b11 − b22. (A.41)

For a rigid body, there exists a frame, namely the body frame, in which the body remains
at rest. Specifically, the angular momentum of the body with respect to the body frame is null.
In the case of a deformable body, a frame still exists where the body’s angular momentum is
null: This is known as the Tisserand frame. Let K := {eT 1, eT 2, eT 3} denote an orthonormal
Tisserand frame for the small body. The orientation of K with respect to the inertial frame
κ = {e1, e2, e3} is described byR : K → κ . We assume that the angular velocity of the small
body, ω, is perpendicular to the orbital plane, which implies:

R(φ) =
⎛
⎝ cosφ − sin φ 0

sin φ cosφ 0
0 0 1

⎞
⎠ , (A.42)

with ω = ωe3 = φ̇e3.
The angular momentum of the small body is denoted by �s = 	se3, with the index s

representing spin, and is given by:

	s = ω I◦(1 − b33). (A.43)

In the context of the quadrupolar approximation, Euler’s equation for the variation of 	s
is:

	̇s = −3G I◦mα

‖x‖5
{
x1x2(b22 − b11) + b12

(
x21 − x22

) }
. (A.44)

A similar equation holds for the large body.
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It is imperative to note that, unlike the case of a rigid body, the deformation matrix is not
constant in the Tisserand frame K.

To complete the set of Eqs. (A.40) and (A.44), we require additional equations for the
deformation matrices. These equations were derived within the Lagrangian formalism and
utilizingwhat was termed the “association principle,” as detailed in Ragazzo andRuiz (2015),
Ragazzo and Ruiz (2017).

In the Tisserand frame K of the small body, the deformation matrix and the position vector
are denoted by capital letters as follows:

B = R(φ)bR−1(φ) X = R−1(φ)x. (A.45)

The equations for the deformation variables of the smaller body for the generalized Voigt
model in Fig. 1 are (Ragazzo et al. 2022, Eq. (3.15))

(γ + α0)B + � = F

1

α
�̇ + 1

η
� = ˙̃B

η j Ḃ j + α jB j = �, j = 1, . . . , n

B = B̃ + B1 + B2 + · · · + Bn ,

(A.46)

where

• γ , with dimensions of 1/time2, is a parameter representing the self-gravity rigidity of
the body; a larger γ indicates a stronger gravitational force holding the body together. In
Fig. 1, γ would be a spring in parallel with the spring–dashpot system representing the
rheology.

• α0,α,α1, . . . alsowith dimensions of 1/time2, are elastic rigidity coefficients;α increases
with the stiffness.

• η, η1, . . ., dimensions of 1/time, are viscosity parameters; a bodywith a larger η is harder
to deform at a given rate compared to a body with a smaller η.

• B̃, B1, . . ., are nondimensional traceless matrices that represent internal variables of the
rheology;

• �, with dimensions 1/time2, is a traceless force matrix that represents the stress upon the
rheology part. (F − � is the stress supported by self-gravity.)

• F, with dimensions 1/time2, is the force matrix in the Tisserand frame K:

F := C + S Deformation force

C := ω2

3

⎛
⎜⎜⎜⎝
1 0 0

0 1 0

0 0 −2

⎞
⎟⎟⎟⎠ Centrifugal force

S := 3Gmα

|X|5
(
XXT − |X|2

3 1
)
Tidal force

(A.47)

whereX is understood as a column vector,XT is the transpose ofX (a row vector), andXXT

is the usual product of a n × 1 by 1 × n matrix, which gives an n × n matrix with entries(
XXT

)
i j = Xi X j . The norm of a matrix is defined as ‖B‖2 = 1

2Tr
(
BTB

)
.
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Conservation of angular momentum. The orbital angular momentum is given by

	e3 = � = mαm

mα + m
x × ẋ. (A.48)

From Eqs. (A.40) and (A.44), we obtain

�̇ = 3
mαm

|x|5 x ×
(
I◦α

mα

Bα + I◦
m
B
)
x = −�̇sα − �̇s, (A.49)

that shows the conservation of total angular momentum

�T := � + �sα + �s . (A.50)

Energy. The total energy of the system is

E = Ekcm + Ekrot + Edef + Egr (A.51)

where

Ekcm = mαm

mα + m

|ẋ|2
2

(A.52)

is the kinetic energy of the orbital motion;

Ekrot = ωα · Iαωα

2
+ ω · Iω

2
(A.53)

is the kinetic energy of rotation;

Edef = I◦
2

⎛
⎝(γ + α0)‖B‖2 + ‖�‖2

α
+

n∑
j=1

α j‖B j‖2
⎞
⎠+ Large body term (A.54)

is the elastic energy of deformation of the generalized Voigt model in Fig. 1; and

Egr = − Gmαm

|x| − 3G

2

1

|x|5
{
mI◦α

(
x · Bαx

)+ mα I◦(x · Bx)} (A.55)

is the potential energy due to gravitational interactions.
Dissipation of energy. For the generalized Voigt model in Fig. 1, the dissipation function

of the small body is:

D = I◦
2

⎛
⎝‖�‖2

η
+

n∑
j=1

η j‖Ḃ j‖2
⎞
⎠ . (A.56)

A similar expressionDα holds for the large body. The Lagrangian formalismwith dissipation
function Ragazzo and Ruiz (2015), Ragazzo and Ruiz (2017) implies that the total energy
decreases along the motion:

Ė = −(2D + 2Dα) ≤ 0. (A.57)

Moreover, 2Dα and 2D are the powers dissipated within the large and small bodies, respec-
tively.

The secular Eq. (2.13) are approximations to the fundamental equations presented in this
section.
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B Computation of the passive deformationmatrix

Passive deformation refers to the tides caused by an orbiting point mass on an extended body,
while the influence of the gravitational field, resulting from the deformation on the orbit,
is neglected. The equations that describe these passive deformations are obtained setting
B = Bα = 0 in Eqs. (A.40) and (A.44) while preserving Eq. (A.46):

ẍ = −G(mα + m)
x

|x|3 , ω̇ = 0, ω̇α = 0

(γ + α0)B + � = F

1

α
�̇ + 1

η
� = ˙̃B

η j Ḃ j + α jB j = �, j = 1, . . . , n

B = B̃ + B1 + B2 + · · · + Bn .

Plus deformation equations for the large body

(B.58)

In this scenario, ω and ωα remain constant and x follows a Keplerian ellipse.
In order to write the F in a convenient way, we define the matrices (Ragazzo and Ruiz

2017, Eq. (41))

Y0 := 1√
3

⎛
⎝1 0 0
0 1 0
0 0 −2

⎞
⎠ , Y1 := 1√

2

⎛
⎝0 0 1
0 0 −i
1 −i 0

⎞
⎠ , Y2 := 1√

2

⎛
⎝ 1 −i 0

−i −1 0
0 0 0

⎞
⎠ , (B.59)

Y−1 = Y1, and Y−2 = Y2, where the overline represents complex conjugation.
Any symmetric matrix can be written as a linear combination of the six matrices

{1,Y−2,Y−1,Y0,Y1,Y2}. This basis is orthonormal with respect to the Hermitean inner

product A · B = 1
2Tr
(
A
T
B
) = 1

2

∑
i j Ai j Bi j .

Tracelessmatrices that are invariant under rotationwith respect to the e3-axis can bewritten
as linear combinations of {Y−2,Y0,Y2}. These matrices have a simple transformation rule
with respect to rotations about the axis e3, namely

R(θ)Y jR−1(θ) = ei j θ Y j , j = −2, 0, 2. (B.60)

An elliptic orbit in the body frame is given by

X = R−1(φ)x = rR( f + � − φ)e1
= r(cos( f + � − φ) e1 + sin( f + � − φ) e2),

(B.61)

where f is the true anomaly and � is the argument of the periapsis.
The associated tidal force matrix, Eq. (A.47), can be written as

S = 3Gmα

r3
R3( f + � − φ)

{
e1eT1 − 1

3
1
}
R−1
3 ( f + � − φ)

= 3Gmα

2r3

{
e−2i( f +�−φ)Y−2√

2
+ Y0√

3
+ e2i( f +�−φ) Y2√

2

}
.

(B.62)

In Eq. (B.62), the variables r , f , and φ = ωt are dependent on t .
Equations (B.62) and (F.86) give a harmonic decomposition of the tidal force as follows:

S = 3Gmα

2a3

2∑
l=−2

∞∑
k=−∞

ei{t(kn−lω)+l � }YlUkl , (B.63)
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where Uk,−1 = Uk,1 = 0 and

Uk,−2 = X−3,−2
k√
2

, Uk0 = X−3,0
k√
3

, Uk2 = X−3,2
k√
2

. (B.64)

The symmetry property Xn,−m
−k = Xn,m

k implies Ukj = U−k,− j .
The centrifugal force in Eq. (A.47) can be represented as

C = ω2

√
3
Y0. (B.65)

To obtain the almost periodic solution8 of the deformation equation solving for each
Fourier mode separately suffices.

To simplify the notation, we consider a simple harmonic force term of the form

F(t) = F′ei σ t

where F′ is a complex amplitude matrix and σ ∈ R is the constant forcing frequency.
If we do the substitutions

B → B′ ei σ t , B j → B′
j e

i σ t , � → �′ ei σ t ,

whereB′,B′
j and�j

′ are understood as constant complex amplitudematrices, into Eq. (A.46),
then we obtain after some simplifications⎧⎪⎨

⎪⎩γ + α0 +
⎛
⎝ 1

α
+ 1

ηiσ
+

n∑
j=1

1

α j + iση j

⎞
⎠

−1
⎫⎪⎬
⎪⎭B′ = F′. (B.66)

The term 1
α

+ 1
ηiσ +∑n

j=1
1

α j+iση j
is the complex rigidity J (σ ) of the generalized Voigt

model when α0 = 0 (Ragazzo et al. 2022, equation 4.23).
The complex Love number at frequency σ can be written as (Correia et al. 2018, Section

4):

k2(σ ) = 3 I◦G
R5

1

γ + α0 + J−1(σ )
. (B.67)

Note: k2(−σ) = k2(σ ). Therefore, Eq. (B.66) can be written as

B′ = R5

3 I◦G
k2(σ )F′. (B.68)

Applying Eq. (B.68) to each Fourier coefficient of F = S+C, where S and C are defined
in Eqs. (B.63) and (B.65), respectively, we obtain the passive deformation matrix

B(t) = k◦ζc
Y0

3
√
3

+ ζT

2∑
l=−2

∞∑
k=−∞

ei{t(kn−lω)+l � }k2(kn − lω)YlUkl , (B.69)

where k◦ = k2(0) is the secular Love number and

ζc := R5ω2

G I◦
and ζT := mαR5

2 I◦a3
. (B.70)

8 A function is almost periodic if and only if it can be uniformly approximated by trigonometric polynomials.
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C The average angular velocity of the principal axes of inertia

The passive deformation matrix in Eq. (B.69) can be written as

B(t) = b0(t)Y0 + b−2(t)Y−2 + b2(t)Y2 where

b0(t) := k◦ζc
3
√
3

+ ζT√
3

∞∑
k=−∞

ei tkn X−3,0
k (e)k2(kn)

b2(t) := ζT√
2
ei2(−ωt +�)

∞∑
k=−∞

ei tkn X−3,2
k (e)k2(kn − 2ω),

(C.71)

with b−2(t) = b2(t).
Let I1(t) ≤ I2(t) ≤ I3(t) be the principal moments of inertia of the body at time t and

B1(t) ≥ B2(t) ≥ B3(t) be the corresponding elements of the deformation matrix. The frame
of principal axes of inertia Kp := {ep1, ep2, ep3} is defined by three vectors in the direction
of the axes associated with B1(t), B2(t), B3(t), respectively, such that Kp and the Tisserand
frame K have the same orientation.

The diagonalization of the matrix B(t) is done by means of a rotation matrix R(θ) about
the axis e3. The transformation R(θ) : K → Kp maps the Tisserand frame to the principal
axes frame. Equations (C.71) and (B.60) and the definition of Y2 = Y−2 in Eq. (B.59)
imply that either θ = − 1

2 arg(b2) or θ = − 1
2 arg(b2) + π . We will use θ = − 1

2 arg(b2). The
definition of b2(t) in Eq. (C.71) implies

θ(t) = −1

2
arg(b2) = ωt − � − 1

2
arg

( ∞∑
k=−∞

ei tkn X−3,2
k (e)k2(kn − 2ω)

)
. (C.72)

After diagonalization the matrix B becomes

R(θ)BR−1(θ) = b0Y0 + |b2|
(
Y−2 + Y2

) = 1√
3

⎛
⎝b0 0 0

0 b0 0
0 0 −2b0

⎞
⎠+ √

2

⎛
⎝|b2| 0 0

0 −|b2| 0
0 0 0

⎞
⎠ . (C.73)

The orientation of the Tisserand frame K with respect to the inertial frame κ is given by
R(φ) : K → κ , Eq. (A.42). So, the orientation of the principal axes frame with respect to the
inertial frame is given by R(φ)R−1(θ) = R(φ − θ) : Kp → κ or R(ψ) : Kp → κ where
ψ = φ − θ . Therefore, for fixed values of spin ω = φ̇ and mean motion n, we define the
average angular velocity of the principal axes of inertia as:

ωp := lim
t→∞

ψ(t)

t
= lim

t→∞
φ(t) − θ(t)

t
= lim

t→∞
ωt − θ(t)

t
. (C.74)

Using Eq. (C.72) we obtain

ωp = 1

2
lim
t→∞

1

t
arg

( ∞∑
k=−∞

ei tkn X−3,2
k (e)k2(kn − 2ω)

︸ ︷︷ ︸
=P(t)

)
. (C.75)

The function P(t) within parentheses in Eq. (C.75) is periodic with period T = 2π
n .

Therefore, arg
(
P(t + T )

) = 2π j + arg
(
P(t)

)
where j is an integer. This implies

ωp = 1

2
lim
l→∞

1

lT
arg
(
P(lT )

) = 1

2
lim
l→∞

2π jl + arg
(
P(0)

)
lT

= j

2
n. (C.76)
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Since the map t → arg
(
P(t)

)
is periodic with period T , this function can be understood

as the lift of a function from the circle R/(TZ) to the circle R/(2πZ). In this context, the
integer j is the degree of the map from R/(TZ) to R/(2πZ).9 The degree is invariant under
continuous deformation of the function t → arg

(
P(t)

)
. Since P depends differentiably on

(ω, e, n) and also on all parameters of the rheologywithin the usual range of variation of these
variables, we conclude that j is constant. For e = 0, the only nonzero Hansen coefficient is
X−3,2
2 (0) = 1. In this case:

arg
(
P(t)

) = arg
(
eit2nk2(2n − 2ω)

) = t · 2 · 2π
T

+ const ⇒ j = 2. (C.77)

So, as expected:

ωp = n (C.78)

independently of (ω, e, n) and the rheology.

D The average dissipation of energy and average torque

The energy dissipated in the smaller body is −2D, where D is the dissipation function as
given in Eq. (A.56). The average dissipation function over the orbital motion is approximately
given by

〈D〉 := lim
t→∞

T∫
0

Ddt = I◦
2

lim
t→∞

T∫
0

⎛
⎝‖�‖2

η
+

n∑
j=1

η j‖Ḃ j‖2
⎞
⎠ dt, (D.79)

where (B,�, . . .) are the components of the solution to Eq. (A.46) under the passive defor-
mation hypothesis.

From Eq. (A.46), we obtain:

(γ + α0)
���〈Ḃ · B〉 + 〈Ḃ · �〉 = ���〈Ḃ · C〉 + 〈Ḃ · S〉

����
1

α
〈� · �̇〉 + 1

η
‖�‖2 = 〈� · ˙̃B〉

η j‖Ḃ j‖2 + α j
����〈Ḃ j · B j 〉 = 〈Ḃ j · �〉, j = 1, . . . , n

〈Ḃ · �〉 = 〈 ˙̃B · �〉 + 〈Ḃ1 · �〉 + 〈Ḃ2 · �〉 + · · · + 〈Ḃn · �〉,

(D.80)

where we used that the centrifugal force C, Eq. (B.65), is constant. These equations imply

〈D〉 = I◦
2

〈Ḃ · S〉, (D.81)

where S and B are given in Eqs. (B.63) and (B.69), respectively.
In the computation of the averaging 〈Ḃ ·S〉, the following identities are useful:Yl ·Y−m =

δlm , Ukl = U−k,−l , and k2(−σ) = k2(σ ). After some computations, we obtain Eq. (2.10).
The total energy, as given in Eq. (A.51), includes terms that depend on the deformation

matrices. If we set B = Bα = 0 in this equation and assume that the orbit is Keplerian and
the spins are constant, then we obtain the energy function E◦, as presented in Eq. (2.6), for

9 The number of times the domain circleR/(TZ)wraps around the range circleR/(2πZ) under the mapping.

123



44 Page 26 of 30 C. Ragazzo, L. Ruiz

a system of two rigid spherical bodies. It is a natural assumption that the energy dissipated
in the two bodies is subtracted from E◦. This assumption leads to Eq. (2.11).

The average torque is computed as the average of the right-hand side of Eq. (A.44),

〈T〉 := lim
t→∞

T∫
0

−3G I◦mα

‖x‖5
{
x1x2(b22 − b11) + b12

(
x21 − x22

) }
dt, (D.82)

where B represents the passive deformation matrix and x determines Keplerian ellipses.
Standard computations lead to Eq. (2.12).

Equations (2.11) and (2.12) imply Eq. (2.13).

E The functions k∞(�1, �2) and h1(�1, �2).

We define τ1 and τ2 such that τ1 < τ2. Equation (2.34) can be solved for k∞ and h1 as
follows:

k∞ = k∞(τ1, τ2) = kR + kI
nmer

(
1

τ1
+ 1

τ2
− nmerτc

τ1 + τ2

)
,

h1 = h1(τ1, τ2) = (n2merτ
2
1 + 1)τ2(τ2 − τc)

(τ2 − τ1)(τ1 + τ2 + τc(n2merτ1τ2 − 1))
,

(E.83)

where nmerτc := k◦−kR−kI
.

The inequality h1(τ1, τ2) > 0 is equivalent to

τ1
(n2merτcτ2 + 1)

τ2 − τc
+ 1 > 0. (E.84)

We conclude that (E.84) is satisfied for τ2 > τc. The inequality h1(τ1, τ2) < 1 is equivalent
to

τ1
(
n2merτ

2
2 + 1

)
(τc − τ1)

τ2 − τc
> 0. (E.85)

We conclude that the inequalities 0 < h1 < 1 hold for τ2 > τ1 if and only if τ1 < τc < τ2.
For τ2 fixed, limτ1→τc h1(τ1, τ2) = 1, and for τ1 fixed, limτ2→τc h1(τ1, τ2) = 0.

F An identity for Hansen coefficients and the accuracy of eccentricity
expansions

If a is the semi-major axis, e is the eccentricity, f is the true anomaly, and M is the mean
anomaly, then the Hansen coefficients are defined by

( r
a

)n
eim f =

∞∑
k=−∞

Xn,m
k (e)eikM , (F.86)

where n,m, k are integers. This definition is equivalent to

Xn,m
k (e) = 1

2π

∫ 2π

0

( r
a

)n
cos(m f − kM) dM, (F.87)
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which implies Xn,−m
k = Xn,m

−k .
The expression for the averaged torque (2.12) is the sum of several terms proportional to(

X−3,2
k (e)

)2
. The function X−3,2

k (e) can be expanded into an infinite power series in e. For

a given integer N > 1, let X̃−3,2
k denote the truncation of this series at order eN . It can be

shown that Xn,m
k = O(e|m−k|), which implies X−3,2

k = O(e|2−k|). Therefore, expansions in
eccentricity up to order N mean that X̃−3,2

k = 0 if k does not satisfy 2 − N ≤ k ≤ 2 + N .
Question: How large can 0 < e < 1 be for an accurate estimate of the average torque if

we substitute X−3,2
k with X̃−3,2

k in Eq. (2.12)?
Neglecting the constant factor in the definition of the average torque, the difference to be

estimated to answer this question is:

∞∑
k=−∞

{(
X−3,2
k (e)

)2
Im k2(kṀ − 2ω) −

2+N∑
k=2−N

(
X̃−3,2
k (e)

)2
Im k2(kṀ − 2ω)

}
.

If e, Ṁ , and ω are assumed to be independent in the above sum (which is not the case in
this paper), then for Ṁ = 0, the factor k2(−2ω) can be taken out of the sum, and it is enough
to estimate:

∞∑
k=−∞

(
X−3,2
k (e)

)2 −
2+N∑

k=2−N

(
X̃−3,2
k (e)

)2
.

Applying Parseval’s identity to the first term in this sum, we get:

∞∑
k=−∞

(
X−3,2
k (e)

)2 = 1

2π

∫ 2π

0

ei2 f

r3
e−i2 f

r3
dM = 1

2π

∫ 2π

0

1

r6
dM = X−6,0

0 . (F.88)

From Laskar and Boué (2010), X−6,0
0 = 3e4

8 +3e2+1

(1−e2)
9/2 . So, in the case Ṁ = 0, we conclude

that the substitution X−3,2
k → X̃−3,2

k is good if and only if

�(e) :=

∣∣∣∣∣∣∣∣∣∣∣∣

3e4
8 + 3e2 + 1(
1 − e2

)9/2
︸ ︷︷ ︸

=X−6,0
0 (e)

−
2+N∑

k=2−N

(
X̃−3,2
k (e)

)2
︸ ︷︷ ︸

App(e)

∣∣∣∣∣∣∣∣∣∣∣∣
is small. (F.89)

This criterion holds only for Ṁ = 0, but we can loosely expect it to be a necessary
condition for the validity of the approximation even when Ṁ �= 0.

In Fig. 10, we show how to check the approximation for N = 20.
We finally remark that in Eq. (2.10), in addition to the sum with terms proportional to(

X−3,2
k

)2
, there is a sum with terms proportional to

(
X−3,0
k

)2
. Using Parseval’s identity, we

obtain:

∞∑
k=−∞

(
X−3,0
k (e)

)2 = 1

2π

∫ 2π

0

1

r3
1

r3
dM = 1

2π

∫ 2π

0

1

r6
dM = X−6,0

0 . (F.90)
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Fig. 10 For the truncation of X−3,2
k (e) to order e20 (N = 20), and using the notation in Eq. (F.89), we present

the plots of X−6,0
0 (e) and App(e) (ABOVE panel) and �(e)/X−6,0

0 (e) (BELOW panel). The ABOVE panel

shows that the approximation is satisfactory up to e = 0.5 (�(e)/X−6,0
0 (e) ≈ 2× 10−3). The BELOW panel

indicates that the approximation is very good up to e = 0.4 (�(e)/X−6,0
0 (e) ≈ 4 × 10−7)

Therefore, we can combine the criterion in Eq. (F.89) with

∣∣∣∣∣
3e4
8 + 3e2 + 1(
1 − e2

)9/2 −
N∑

k=−N

(
X̃−3,0
k (e)

)2∣∣∣∣∣ is small. (F.91)

This allows us to estimate the accuracy of the partial sums in Eq. (2.10) after truncation

in eccentricity. Computations similar to those in Fig. 10 show that truncating
(
X−3,0
k

)2
in

eccentricity is less problematic than truncating
(
X−3,2
k

)2
.
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