Enhanced Forecasting of Equity Fund Returns Using Machine Learning (2025)
- Authors:
- USP affiliated authors: BARGOS, FABIANO FERNANDES - EEL ; ROMÃO, ESTANER CLARO - EEL
- Unidade: EEL
- DOI: 10.3390/mca30010009
- Subjects: APRENDIZADO COMPUTACIONAL; MEDIDAS ESTATÍSTICAS
- Keywords: predictive analytics; multi-class classification; model accuracy; quantitative trading; light gradient boosting machine; random forest; extra trees
- Language: Inglês
- Abstract: This paper aims to explore the integration of machine learning with risk and return performance measures, to provide a data-driven approach to identifying opportunities in equity funds. We built a dataset with 72 performance measures in the columns calculated for multiple periods ranging from 1 to 120 months. By shifting the values in the 1- and 3-month return columns, we created two new columns, aligning the data for the month t with the return for the month t + 1. We categorized each row into one of three classes based on the mean and standard deviation of the shifted 1- and 3-month returns during the period. Based on cross-validated accuracy, we focused on the top three classifiers. As a result, the developed models achieved accuracy, recall, and precision values exceeding 0.92 on the test data. In addition, models trained on 1 year of data maintained predictive reliability for up to 2 months into the future, achieving precision above 90% in forecasting funds with 3-month returns above the average. Thus, this study highlights the effectiveness of machine learning in financial forecasting, particularly within the environment of the Brazilian equity market.
- Imprenta:
- Source:
- Título: Mathematical And Computational Applications
- ISSN: 2297-8747
- Volume/Número/Paginação/Ano: v.30, n.1, p.1-15, 2025
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BARGOS, Fabiano Fernandes e ROMAO, Estaner Claro. Enhanced Forecasting of Equity Fund Returns Using Machine Learning. Mathematical And Computational Applications, v. 30, n. 1, p. 1-15, 2025Tradução . . Disponível em: https://doi.org/10.3390/mca30010009. Acesso em: 10 fev. 2026. -
APA
Bargos, F. F., & Romao, E. C. (2025). Enhanced Forecasting of Equity Fund Returns Using Machine Learning. Mathematical And Computational Applications, 30( 1), 1-15. doi:10.3390/mca30010009 -
NLM
Bargos FF, Romao EC. Enhanced Forecasting of Equity Fund Returns Using Machine Learning [Internet]. Mathematical And Computational Applications. 2025 ;30( 1): 1-15.[citado 2026 fev. 10 ] Available from: https://doi.org/10.3390/mca30010009 -
Vancouver
Bargos FF, Romao EC. Enhanced Forecasting of Equity Fund Returns Using Machine Learning [Internet]. Mathematical And Computational Applications. 2025 ;30( 1): 1-15.[citado 2026 fev. 10 ] Available from: https://doi.org/10.3390/mca30010009 - Predicting the Equilibrium Product Formation in Oxy-fuel Combustion of Octane (C8H18) using Numerical Modeling
- Integração de matemática e física por meio da Aprendizagem Baseada em Projetos (ABP): o projeto 'Minha casa, minha energia'
- Desenvolvimento de jogos para apoio no ensino de termologia e termodinâmica no ensino fundamental
- O ensino de programação de computadores em cursos de engenharia no brasil
- A partitioned coupling framework for peridynamics and classical theory: Analysis and simulations.
- A concurrent multiscale coupling framework for peridynamics and classical theory.
- Planejamento e Gestão da Educação Ambiental: Proposta de Plano de Ações e Práticas Ambientais para a Rede Municipal de Ensino Fundamental I do Município de Lorena (SP)
- The Importance of Accurate Boundary Condition in Obtaining Reliable Shearing Stresses on a Torsional Finite Element Simulation
- Assessing the Impact of Changes on Design and Material of Howe Bridgesby Finite Element Analysis
- Managing individuals, collectiveness and environment in Decision Making Process for Businesses (an unpretentious approach)
Informações sobre o DOI: 10.3390/mca30010009 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
