A compositional atlas for algebraic circuits (2024)
- Authors:
- Autor USP: MAUÁ, DENIS DERATANI - IME
- Unidade: IME
- Subjects: INTELIGÊNCIA ARTIFICIAL; MODELOS PARA PROCESSOS ESTOCÁSTICOS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Proceedings
- Conference titles: Conference on Neural Information Processing Systems - NeurIPS
-
ABNT
WANG, Bin et al. A compositional atlas for algebraic circuits. 2024, Anais.. San Diego: NeurIPS, 2024. Disponível em: https://proceedings.neurips.cc/paper_files/paper/2024/file/ff9c70659c39cdd801dd5f5a1201c29e-Paper-Conference.pdf. Acesso em: 12 jan. 2026. -
APA
Wang, B., Mauá, D. D., Van den Broeck, G., & Choi, Y. J. (2024). A compositional atlas for algebraic circuits. In Proceedings. San Diego: NeurIPS. Recuperado de https://proceedings.neurips.cc/paper_files/paper/2024/file/ff9c70659c39cdd801dd5f5a1201c29e-Paper-Conference.pdf -
NLM
Wang B, Mauá DD, Van den Broeck G, Choi YJ. A compositional atlas for algebraic circuits [Internet]. Proceedings. 2024 ;[citado 2026 jan. 12 ] Available from: https://proceedings.neurips.cc/paper_files/paper/2024/file/ff9c70659c39cdd801dd5f5a1201c29e-Paper-Conference.pdf -
Vancouver
Wang B, Mauá DD, Van den Broeck G, Choi YJ. A compositional atlas for algebraic circuits [Internet]. Proceedings. 2024 ;[citado 2026 jan. 12 ] Available from: https://proceedings.neurips.cc/paper_files/paper/2024/file/ff9c70659c39cdd801dd5f5a1201c29e-Paper-Conference.pdf - Hidden Markov models with set-valued parameters
- Advances in learning Bayesian networks of bounded treewidth
- Advances in automatically solving the ENEM
- Special issue on robustness in probabilistic graphical models. [Editorial]
- The National Meeting on Artificial and Computational Intelligence (ENIAC) is one the main national forums for researchers... [Preface]
- Approximation complexity of maximum a posteriori inference in sum-product networks
- Modelos de tópicos na classificação automática de resenhas de usuário
- Initialization heuristics for greedy bayesian network structure learning
- International Journal of Approximate Reasoning
- Better initialization heuristics for order-based bayesian network structure learning
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3226891.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
