University entrance exam as a guiding test for artificial intelligence (2018)
- Authors:
- Autor USP: MAUÁ, DENIS DERATANI - IME
- Unidade: IME
- DOI: 10.1109/BRACIS.2017.44
- Subjects: INTELIGÊNCIA ARTIFICIAL; PROCESSAMENTO DE LINGUAGEM NATURAL; RECUPERAÇÃO DA INFORMAÇÃO
- Keywords: question answering; information retrieval; Turing Test replacement
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Piscataway
- Date published: 2018
- Source:
- Título: Proceedings
- Conference titles: Brazilian Conference on Intelligent Systems (BRACIS)
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
SILVEIRA, Igor Cataneo e MAUÁ, Denis Deratani. University entrance exam as a guiding test for artificial intelligence. 2018, Anais.. Piscataway: IEEE, 2018. Disponível em: https://doi.org/10.1109/BRACIS.2017.44. Acesso em: 27 jan. 2026. -
APA
Silveira, I. C., & Mauá, D. D. (2018). University entrance exam as a guiding test for artificial intelligence. In Proceedings. Piscataway: IEEE. doi:10.1109/BRACIS.2017.44 -
NLM
Silveira IC, Mauá DD. University entrance exam as a guiding test for artificial intelligence [Internet]. Proceedings. 2018 ;[citado 2026 jan. 27 ] Available from: https://doi.org/10.1109/BRACIS.2017.44 -
Vancouver
Silveira IC, Mauá DD. University entrance exam as a guiding test for artificial intelligence [Internet]. Proceedings. 2018 ;[citado 2026 jan. 27 ] Available from: https://doi.org/10.1109/BRACIS.2017.44 - Modelos de tópicos na classificação automática de resenhas de usuário
- Hidden Markov models with set-valued parameters
- Initialization heuristics for greedy bayesian network structure learning
- Advances in learning Bayesian networks of bounded treewidth
- Time robust trees: using temporal invariance to improve generalization
- Better initialization heuristics for order-based bayesian network structure learning
- Equivalences between maximum a posteriori inference in Bayesian networks and maximum expected utility computation in influence diagrams
- International Journal of Approximate Reasoning
- Early classification of time series by Hidden Markov Models with set-valued parameters
- Approximation complexity of maximum a posteriori inference in sum-product networks
Informações sobre o DOI: 10.1109/BRACIS.2017.44 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2875107.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
