Approximation complexity of maximum a posteriori inference in sum-product networks (2017)
- Authors:
- Autor USP: MAUÁ, DENIS DERATANI - IME
- Unidade: IME
- Subjects: INTELIGÊNCIA ARTIFICIAL; MODELOS PARA PROCESSOS ESTOCÁSTICOS
- Language: Inglês
- Imprenta:
- Publisher: AUAI Press
- Publisher place: Corvallis
- Date published: 2017
- Source:
- Título: Proceedings
- Conference titles: Conference on Uncertainty in Artificial Intelligence
-
ABNT
CONATY, Diarmaid e MAUÁ, Denis Deratani e CAMPOS, Cassio P. de. Approximation complexity of maximum a posteriori inference in sum-product networks. 2017, Anais.. Corvallis: AUAI Press, 2017. Disponível em: http://auai.org/uai2017/proceedings/papers/109.pdf. Acesso em: 05 nov. 2024. -
APA
Conaty, D., Mauá, D. D., & Campos, C. P. de. (2017). Approximation complexity of maximum a posteriori inference in sum-product networks. In Proceedings. Corvallis: AUAI Press. Recuperado de http://auai.org/uai2017/proceedings/papers/109.pdf -
NLM
Conaty D, Mauá DD, Campos CP de. Approximation complexity of maximum a posteriori inference in sum-product networks [Internet]. Proceedings. 2017 ;[citado 2024 nov. 05 ] Available from: http://auai.org/uai2017/proceedings/papers/109.pdf -
Vancouver
Conaty D, Mauá DD, Campos CP de. Approximation complexity of maximum a posteriori inference in sum-product networks [Internet]. Proceedings. 2017 ;[citado 2024 nov. 05 ] Available from: http://auai.org/uai2017/proceedings/papers/109.pdf - Hidden Markov models with set-valued parameters
- Advances in learning Bayesian networks of bounded treewidth
- Early classification of time series by Hidden Markov Models with set-valued parameters
- Initialization heuristics for greedy bayesian network structure learning
- Time robust trees: using temporal invariance to improve generalization
- University entrance exam as a guiding test for artificial intelligence
- On using sum-product networks for multi-label classification
- Modelos de tópicos na classificação automática de resenhas de usuário
- Better initialization heuristics for order-based bayesian network structure learning
- International Journal of Approximate Reasoning
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
2854746.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas