From fault detection to anomaly explanation: a case study on predictive maintenance (2024)
- Authors:
- Autor USP: MASTELINI, SAULO MARTIELLO - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.websem.2024.100821
- Subjects: APRENDIZADO COMPUTACIONAL; MANUTENÇÃO PREDITIVA
- Keywords: Explainable AI; Online anomaly detection; Predictive maintenance
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Web Semantics : science, services and agents on the World Wide Web
- ISSN: 1570-8268
- Volume/Número/Paginação/Ano: v. 81, p. 1-9, July 2024
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
GAMA, João et al. From fault detection to anomaly explanation: a case study on predictive maintenance. Web Semantics : science, services and agents on the World Wide Web, v. 81, p. 1-9, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.websem.2024.100821. Acesso em: 11 fev. 2026. -
APA
Gama, J., Ribeiro, R. P., Mastelini, S. M., Davari, N., & Veloso, B. M. D. (2024). From fault detection to anomaly explanation: a case study on predictive maintenance. Web Semantics : science, services and agents on the World Wide Web, 81, 1-9. doi:10.1016/j.websem.2024.100821 -
NLM
Gama J, Ribeiro RP, Mastelini SM, Davari N, Veloso BMD. From fault detection to anomaly explanation: a case study on predictive maintenance [Internet]. Web Semantics : science, services and agents on the World Wide Web. 2024 ; 81 1-9.[citado 2026 fev. 11 ] Available from: https://doi.org/10.1016/j.websem.2024.100821 -
Vancouver
Gama J, Ribeiro RP, Mastelini SM, Davari N, Veloso BMD. From fault detection to anomaly explanation: a case study on predictive maintenance [Internet]. Web Semantics : science, services and agents on the World Wide Web. 2024 ; 81 1-9.[citado 2026 fev. 11 ] Available from: https://doi.org/10.1016/j.websem.2024.100821 - Efficient online tree, rule-based and distance-based algorithms
- Towards meta-learning for multi-target regression problems
- River: machine learning for streaming data in Python
- ‘Right to be forgotten’: analyzing the impact of forgetting data using K-NN algorithm in data stream learning
- Online anomaly explanation: a case study on predictive maintenance
- DSTARS: a multi-target deep structure for tracking asynchronous regressor
- On ensemble techniques for data stream regression
- Improved prediction of soil properties with multi-target stacked generalisation on EDXRF spectra
- A meta-learning approach for selecting image segmentation algorithm
- Online local boosting: improving performance in online decision trees
Informações sobre o DOI: 10.1016/j.websem.2024.100821 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3201552.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
