On ensemble techniques for data stream regression (2020)
- Authors:
- Autor USP: MASTELINI, SAULO MARTIELLO - ICMC
- Unidade: ICMC
- DOI: 10.1109/IJCNN48605.2020.9206756
- Subjects: APRENDIZADO COMPUTACIONAL; ANÁLISE DE SÉRIES TEMPORAIS
- Keywords: data streams; regression; ensemble; random patches; random subspaces
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Piscataway
- Date published: 2020
- Source:
- Título: Proceedings
- Conference titles: International Joint Conference on Neural Networks - IJCNN
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
GOMES, Heitor Murilo et al. On ensemble techniques for data stream regression. 2020, Anais.. Piscataway: IEEE, 2020. Disponível em: https://doi.org/10.1109/IJCNN48605.2020.9206756. Acesso em: 12 fev. 2026. -
APA
Gomes, H. M., Montiel, J., Mastelini, S. M., Pfahringer, B., & Bifet, A. (2020). On ensemble techniques for data stream regression. In Proceedings. Piscataway: IEEE. doi:10.1109/IJCNN48605.2020.9206756 -
NLM
Gomes HM, Montiel J, Mastelini SM, Pfahringer B, Bifet A. On ensemble techniques for data stream regression [Internet]. Proceedings. 2020 ;[citado 2026 fev. 12 ] Available from: https://doi.org/10.1109/IJCNN48605.2020.9206756 -
Vancouver
Gomes HM, Montiel J, Mastelini SM, Pfahringer B, Bifet A. On ensemble techniques for data stream regression [Internet]. Proceedings. 2020 ;[citado 2026 fev. 12 ] Available from: https://doi.org/10.1109/IJCNN48605.2020.9206756 - Efficient online tree, rule-based and distance-based algorithms
- Towards meta-learning for multi-target regression problems
- River: machine learning for streaming data in Python
- From fault detection to anomaly explanation: a case study on predictive maintenance
- ‘Right to be forgotten’: analyzing the impact of forgetting data using K-NN algorithm in data stream learning
- Online anomaly explanation: a case study on predictive maintenance
- DSTARS: a multi-target deep structure for tracking asynchronous regressor
- Improved prediction of soil properties with multi-target stacked generalisation on EDXRF spectra
- A meta-learning approach for selecting image segmentation algorithm
- Online local boosting: improving performance in online decision trees
Informações sobre o DOI: 10.1109/IJCNN48605.2020.9206756 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3009816.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
