Lines of principal curvature near singular end points of surfaces in R³ (2006)
- Authors:
- Autor USP: TELLO, JORGE MANUEL SOTOMAYOR - IME
- Unidade: IME
- DOI: 10.2969/aspm/04310437
- Subjects: SUPERFÍCIES; GEOMETRIA DIFERENCIAL; TEORIA DAS SINGULARIDADES
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Advanced Studies in Pure Mathematics
- ISSN: 0920-1971
- Volume/Número/Paginação/Ano: v. 43, p. 437-462, 2006
- Conference titles: MSJ International Research Institute Singularity Theory and Its Applications
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
SOTOMAYOR, Jorge e GARCIA, Ronaldo. Lines of principal curvature near singular end points of surfaces in R³. Advanced Studies in Pure Mathematics. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.2969/aspm/04310437. Acesso em: 21 jan. 2026. , 2006 -
APA
Sotomayor, J., & Garcia, R. (2006). Lines of principal curvature near singular end points of surfaces in R³. Advanced Studies in Pure Mathematics. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.2969/aspm/04310437 -
NLM
Sotomayor J, Garcia R. Lines of principal curvature near singular end points of surfaces in R³ [Internet]. Advanced Studies in Pure Mathematics. 2006 ; 43 437-462.[citado 2026 jan. 21 ] Available from: https://doi.org/10.2969/aspm/04310437 -
Vancouver
Sotomayor J, Garcia R. Lines of principal curvature near singular end points of surfaces in R³ [Internet]. Advanced Studies in Pure Mathematics. 2006 ; 43 437-462.[citado 2026 jan. 21 ] Available from: https://doi.org/10.2969/aspm/04310437 - Lines of curvature and an integral form of Mainardi-Codazzi equations
- Harmonic mean curvature lines on surfaces immersed in R-3
- Stable piecewise polynomial vector fields
- Bifurcations in a class of polycycles involving two saddle-nodes on a Möbius band
- Algebraic solutions for polynomial systems with emphasis in the quadratic case
- Structurally stable configurations of lines of mean curvature and umbilic points on surfaces immersed
- Bifurcation analysis of a model for biological control
- Umbilic and tangential singularities on configurations of principal curvature lines
- Structurally stable configurations of lines of curvature and umbilic points on surfaces
- On pairs of foliations defined by vector fields in the plane
Informações sobre o DOI: 10.2969/aspm/04310437 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3175530.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
