OA02.02 development of machine learning model to estimate overall survival in patients with advanced NSCLC and ECOG-PS > 1 (2021)
- Authors:
- USP affiliated authors: FUJITA, ANDRÉ - IME ; CARVALHO, VINÍCIUS JARDIM - Interunidades em Bioinformática
- Unidades: IME; Interunidades em Bioinformática
- DOI: 10.1016/j.jtho.2021.08.038
- Subjects: INTELIGÊNCIA ARTIFICIAL; CUIDADOS PALIATIVOS
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Thoracic Oncology
- ISSN: 1556-0864
- Volume/Número/Paginação/Ano: v. 16, n. 10, Supplement, p. S850, 2021
- Conference titles: World Conference on Lung Cancer Worldwide
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
CUNHA, M et al. OA02.02 development of machine learning model to estimate overall survival in patients with advanced NSCLC and ECOG-PS > 1. Journal of Thoracic Oncology. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.jtho.2021.08.038. Acesso em: 14 fev. 2026. , 2021 -
APA
Cunha, M., Borges, A. P., Carvalho, V. J., Fujita, A., & Castro, G. D. (2021). OA02.02 development of machine learning model to estimate overall survival in patients with advanced NSCLC and ECOG-PS > 1. Journal of Thoracic Oncology. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1016/j.jtho.2021.08.038 -
NLM
Cunha M, Borges AP, Carvalho VJ, Fujita A, Castro GD. OA02.02 development of machine learning model to estimate overall survival in patients with advanced NSCLC and ECOG-PS > 1 [Internet]. Journal of Thoracic Oncology. 2021 ; 16( 10): S850.[citado 2026 fev. 14 ] Available from: https://doi.org/10.1016/j.jtho.2021.08.038 -
Vancouver
Cunha M, Borges AP, Carvalho VJ, Fujita A, Castro GD. OA02.02 development of machine learning model to estimate overall survival in patients with advanced NSCLC and ECOG-PS > 1 [Internet]. Journal of Thoracic Oncology. 2021 ; 16( 10): S850.[citado 2026 fev. 14 ] Available from: https://doi.org/10.1016/j.jtho.2021.08.038 - OA02.02 development of machine learning model to estimate overall survival in patients with advanced NSCLC and ECOG-PS > 1
- Predicting survival in metastatic non‐small cell lung cancer patients with poor ECOG‐PS: a single‐arm prospective study
- Computational tools for comparing gene coexpression networks
- A expressão de Epirregulina e o papel dual dos macrófagos pró-inflamátorios no microambiente tumoral de Carcinoma Pulmonar de Células Não Pequenas
- BioNetStat: uma ferramenta para análise diferencial de redes biológicas
- BioNetStat: a tool for biological networks differential analysis
- Impact of systemic inflammation, intramuscular adipose tissue content, and EORTC-QLQ-CAX24 symptom scale on the prognosis of patients with advanced non-small-cell lung cancer
- Deletion and low expression of NFKBIA are associated with poor prognosis in lower-grade glioma patients
- Conservative generalized bifurcation diagrams and phase space properties for oval-like billiards
- Computational statistics in biological big data: methods and applications
Informações sobre o DOI: 10.1016/j.jtho.2021.08.038 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3169117.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
