Scalable learning of probabilistic circuits (2023)
- Authors:
- USP affiliated authors: MAUÁ, DENIS DERATANI - IME ; GEH, RENATO LUI - IME
- Unidade: IME
- DOI: 10.5753/ctd.2023.229457
- Subjects: APRENDIZADO COMPUTACIONAL; MODELOS PARA PROCESSOS ESTOCÁSTICOS; INTELIGÊNCIA ARTIFICIAL
- Language: Inglês
- Imprenta:
- Publisher: SBC
- Publisher place: Porto Alegre
- Date published: 2023
- Source:
- Conference titles: Congresso da Sociedade Brasileira de Computação - CSBC
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
GEH, Renato Lui e MAUÁ, Denis Deratani. Scalable learning of probabilistic circuits. 2023, Anais.. Porto Alegre: SBC, 2023. Disponível em: https://doi.org/10.5753/ctd.2023.229457. Acesso em: 21 jan. 2026. -
APA
Geh, R. L., & Mauá, D. D. (2023). Scalable learning of probabilistic circuits. In Anais. Porto Alegre: SBC. doi:10.5753/ctd.2023.229457 -
NLM
Geh RL, Mauá DD. Scalable learning of probabilistic circuits [Internet]. Anais. 2023 ;[citado 2026 jan. 21 ] Available from: https://doi.org/10.5753/ctd.2023.229457 -
Vancouver
Geh RL, Mauá DD. Scalable learning of probabilistic circuits [Internet]. Anais. 2023 ;[citado 2026 jan. 21 ] Available from: https://doi.org/10.5753/ctd.2023.229457 - Learning probabilistic sentential decision diagrams under logic constraints by sampling and averaging
- Learning probabilistic sentential decision diagrams by sampling
- End-to-end imitation learning of lane following policies using sum-product networks
- Fast and accurate learning of probabilistic circuits by random projections
- The National Meeting on Artificial and Computational Intelligence (ENIAC) is one the main national forums for researchers... [Preface]
- Approximation complexity of maximum a posteriori inference in sum-product networks
- Hidden Markov models with set-valued parameters
- Modelos de tópicos na classificação automática de resenhas de usuário
- Advances in automatically solving the ENEM
- Advances in learning Bayesian networks of bounded treewidth
Informações sobre o DOI: 10.5753/ctd.2023.229457 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3156850.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
