Learning probabilistic sentential decision diagrams under logic constraints by sampling and averaging (2021)
- Authors:
- USP affiliated authors: MAUÁ, DENIS DERATANI - IME ; GEH, RENATO LUI - IME
- Unidade: IME
- Subjects: INTELIGÊNCIA ARTIFICIAL; APRENDIZADO COMPUTACIONAL; RACIOCÍNIO PROBABILÍSTICO
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Proceedings of Machine Learning Research : PMLR
- ISSN: 2640-3498
- Volume/Número/Paginação/Ano: v. 161, p. 2039-2049, 2021
- Conference titles: Conference on Uncertainty in Artificial Intelligence - UAI
-
ABNT
GEH, Renato Lui e MAUÁ, Denis Deratani. Learning probabilistic sentential decision diagrams under logic constraints by sampling and averaging. Proceedings of Machine Learning Research : PMLR. Brookline: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://proceedings.mlr.press/v161/geh21a/geh21a-supp.pdf. Acesso em: 21 jan. 2026. , 2021 -
APA
Geh, R. L., & Mauá, D. D. (2021). Learning probabilistic sentential decision diagrams under logic constraints by sampling and averaging. Proceedings of Machine Learning Research : PMLR. Brookline: Instituto de Matemática e Estatística, Universidade de São Paulo. Recuperado de https://proceedings.mlr.press/v161/geh21a/geh21a-supp.pdf -
NLM
Geh RL, Mauá DD. Learning probabilistic sentential decision diagrams under logic constraints by sampling and averaging [Internet]. Proceedings of Machine Learning Research : PMLR. 2021 ; 161 2039-2049.[citado 2026 jan. 21 ] Available from: https://proceedings.mlr.press/v161/geh21a/geh21a-supp.pdf -
Vancouver
Geh RL, Mauá DD. Learning probabilistic sentential decision diagrams under logic constraints by sampling and averaging [Internet]. Proceedings of Machine Learning Research : PMLR. 2021 ; 161 2039-2049.[citado 2026 jan. 21 ] Available from: https://proceedings.mlr.press/v161/geh21a/geh21a-supp.pdf - Learning probabilistic sentential decision diagrams by sampling
- End-to-end imitation learning of lane following policies using sum-product networks
- Scalable learning of probabilistic circuits
- Fast and accurate learning of probabilistic circuits by random projections
- Scalable learning of probabilistic circuits
- The National Meeting on Artificial and Computational Intelligence (ENIAC) is one the main national forums for researchers... [Preface]
- Approximation complexity of maximum a posteriori inference in sum-product networks
- Hidden Markov models with set-valued parameters
- Modelos de tópicos na classificação automática de resenhas de usuário
- Advances in automatically solving the ENEM
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3064277_material suplemen... | Direct link | ||
| 3064277.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
