High-fidelity reproduction of central galaxy joint distributions with neural networks (2023)
- Authors:
- USP affiliated authors: ABRAMO, LUIS RAUL WEBER - IF ; RODRIGUES, NATÁLIA VILLA NOVA - IF ; SANTI, NATALÍ SOLER MATUBARO DE - IF
- Unidade: IF
- DOI: 10.1093/mnras/stad1186
- Subjects: REDES NEURAIS; GALÁXIAS; COSMOLOGIA
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: Oxford University Press
- Publisher place: Oxford
- Date published: 2023
- Source:
- Título: Monthly Notices of the Royal Astronomical Society
- Volume/Número/Paginação/Ano: v. 522, n. 3, p. 3236–3247, 2023
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
RODRIGUES, Natália Villa Nova et al. High-fidelity reproduction of central galaxy joint distributions with neural networks. Monthly Notices of the Royal Astronomical Society, v. 522, n. 3, p. 3236–3247, 2023Tradução . . Disponível em: https://doi.org/10.1093/mnras/stad1186. Acesso em: 24 jan. 2026. -
APA
Rodrigues, N. V. N., Santi, N. S. M. de, Dorta, A. D. M., & Abramo, L. R. W. (2023). High-fidelity reproduction of central galaxy joint distributions with neural networks. Monthly Notices of the Royal Astronomical Society, 522( 3), 3236–3247. doi:10.1093/mnras/stad1186 -
NLM
Rodrigues NVN, Santi NSM de, Dorta ADM, Abramo LRW. High-fidelity reproduction of central galaxy joint distributions with neural networks [Internet]. Monthly Notices of the Royal Astronomical Society. 2023 ; 522( 3): 3236–3247.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1093/mnras/stad1186 -
Vancouver
Rodrigues NVN, Santi NSM de, Dorta ADM, Abramo LRW. High-fidelity reproduction of central galaxy joint distributions with neural networks [Internet]. Monthly Notices of the Royal Astronomical Society. 2023 ; 522( 3): 3236–3247.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1093/mnras/stad1186 - Robust field-level likelihood-free inference with galaxies
- Improving cosmological covariance matrices with machine learning
- The miniJPAS survey quasar selection – II: machine learning classification with photometric measurements and uncertainties
- The miniJPAS survey quasar selection: IV. Classification and redshift estimation with SQUEzE
- The miniJPAS survey quasar selection – I: mock catalogues for classification
- Mimicking the halo–galaxy connection using machine learning
- The miniJPAS survey quasar selection
- The information of attribute uncertainties: what convolutional neural networks can learn about errors in input data
- A universal equation to predict ''ômega' IND. m' from halo and galaxy catalogs
- The CAMELS project: expanding the galaxy formation model space with new ASTRID and 28-parameter TNG and SIMBA suites
Informações sobre o DOI: 10.1093/mnras/stad1186 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| stad1186.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
