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ABSTRACT

The relationship between galaxies and haloes is central to the description of galaxy formation and a fundamental step towards
extracting precise cosmological information from galaxy maps. However, this connection involves several complex processes
that are interconnected. Machine Learning methods are flexible tools that can learn complex correlations between a large number
of features, but are traditionally designed as deterministic estimators. In this work, we use the IllustrisTNG300-1 simulation
and apply neural networks in a binning classification scheme to predict probability distributions of central galaxy properties,
namely stellar mass, colour, specific star formation rate, and radius, using as input features the halo mass, concentration, spin,
age, and the overdensity on a scale of 3 2~ Mpc. The model captures the intrinsic scatter in the relation between halo and galaxy
properties, and can thus be used to quantify the uncertainties related to the stochasticity of the galaxy properties with respect
to the halo properties. In particular, with our proposed method, one can define and accurately reproduce the properties of the
different galaxy populations in great detail. We demonstrate the power of this tool by directly comparing traditional single-point
estimators and the predicted joint probability distributions, and also by computing the power spectrum of a large number of
tracers defined on the basis of the predicted colour—stellar mass diagram. We show that the neural networks reproduce clustering
statistics of the individual galaxy populations with excellent precision and accuracy.
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1 INTRODUCTION

Characterizing the connection between the properties of galaxies and
those of the underlying population of dark matter (DM) haloes is one
of the most crucial aspects to understand the large-scale structure
(LSS) of the Universe. This link not only encapsulates fundamental
information about the process of galaxy formation, but it is also a
crucial step to optimize the extraction of cosmological constraints
from galaxy maps.

The halo—galaxy connection is nowadays investigated using a
variety of techniques (see e.g. Wechsler & Tinker 2018). On the
one hand, empirical methods use DM-only simulations as the basis
on top of which different analytical prescriptions are implemented
in order to establish that connection. These techniques include
subhalo abundance matching (e.g. Conroy, Wechsler & Kravtsov
2006; Behroozi, Conroy & Wechsler 2010; Trujillo-Gomez et al.
2011; Favole et al. 2016, 2022; Guo et al. 2016; Contreras, Angulo
& Zennaro 2020a, b; Hadzhiyska et al. 2021), halo occupation
distributions (e.g. Berlind & Weinberg 2002; Zehavi et al. 2005,
2018; Artale et al. 2018; Bose et al. 2019; Hadzhiyska et al. 2020a;
Xu, Zehavi & Contreras 2021), and empirical forward modelling (e.g.
Becker 2015; Moster, Naab & White 2018; Behroozi et al. 2019). On
the other hand, it is possible to model, with varying degrees of detail,
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the physical mechanisms that shape the process of galaxy formation.
In this context, hydrodynamical simulations (e.g. Somerville & Davé
2015; Naab & Ostriker 2017; Pillepich et al. 2018a, b; Springel
et al. 2018; Villaescusa-Navarro et al. 2021, 2022) are perhaps the
most ambitious efforts. These models employ known physics to
simulate, at a subgrid level, a variety of processes that are related to
galaxy formation such as star formation, radiative metal cooling, and
supernova, stellar, and black hole feedback (for reviews on this, see
Somerville & Davé 2015; Naab & Ostriker 2017). This modelling
can also be approached from a semi-analytical, less computationally
demanding, perspective. These semi-analytical models (e.g. White
& Frenk 1991; Guo et al. 2013) employ physically motivated recipes
to mimic the galaxy formation processes.

In this paper, we investigate the halo—galaxy connection from a
machine learning (ML) perspective. The issue of the halo—galaxy
connection has been addressed using ML by many works (e.g.
Kamdar, Turk & Brunner 2016; Agarwal, Davé & Bassett 2018;
Calderon & Berlind 2019; Jo & Kim 2019; Man et al. 2019; Yip
et al. 2019; Zhang et al. 2019; Kasmanoff et al. 2020; Delgado et al.
2021; McGibbon & Khochfar 2021; Shao et al. 2021; de Andres et al.
2022; Jespersen et al. 2022; Lovell et al. 2022; Stiskalek et al. 2022;
Chittenden & Tojeiro 2023). In de Santi et al. (2022), we provide
an ML suite combining some of the most powerful, well-known
models in the literature to predict central galaxy properties using
host halo properties. All the applied methods, however, are designed
to return a single value for each galaxy property, independently of the
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remaining properties. However, there are many complex interrelated
processes involved in the formation and evolution of galaxies, and
their properties cannot be precisely determined by halo properties
alone. Therefore, a model that proposes to map the relation between
galaxies and host haloes should encode not only the correlations
between galaxy properties, but also the uncertainties due to the
stochastic aspects of galaxy formation. In other words, any given
halo could host a central galaxy with a variety of properties and,
hence, a model should return joint probability distributions for the
possible values of those galaxy properties, instead of a single one.

The ML suite from our previous work (Santi et al. 2022) provided
encouraging results in terms of single-point estimation metrics, such
as the Pearson correlation coefficient between true and predicted
values, especially for stellar mass, which is highly correlated with
halo mass. However, deterministic models that try to predict indi-
vidual galaxy properties can be biased towards the most frequent
values, and thus fail to recover the overall distributions of the galaxy
properties. In that paper, this issue is treated as an imbalanced data
problem; i.e. despite of the fact that different output values could
be associated with some fixed set of halo properties, the machine
tends to assign the most frequent values. To address this problem, we
made use of a data augmentation technique to increase the weight
of the less represented instances, which allowed us to better recover
the underrepresented populations, but still in a way that each halo is
assigned a single, individual value for each central galaxy property
(Santi et al. 2022).

In this work, we proceed by predicting probability distributions
with neural networks (NNs) with a binning classification scheme,
which we refer to as NNy, for the same central galaxy properties
as Santi et al. (2022), namely stellar mass, g — i colour, specific star
formation rate (sSFR), and galaxy radius. This not only enables
us to recover the overall distributions of the galaxy properties
from the IustrisTNG300-1 (hereafter, TNG300) sample, but also
to capture the intrinsic scatter in the halo—galaxy mapping by
providing, for each halo, the probability distributions associated with
its central galaxy properties. We also train NN to predict the
galaxy properties jointly, finding that the joint distributions recover
correlations that are lost when predicting univariate distributions
independently. ML probability-based descriptions have been used in
related contexts, in particular with NNs, such as photometric redshift
estimation (e.g. Lima et al. 2022), dynamical mass of galaxy cluster
estimation (e.g. Ramanah et al. 2020; Ho et al. 2021), and recently
in the halo—galaxy connection (e.g. Stiskalek et al. 2022).

In order to study how NNy, captures the intrinsic stochasticity in
the halo—galaxy connection, we analyse the shape of the distributions
of individual galaxies, which gives some insights into the contribu-
tion of secondary halo properties. Moreover, we analyse how this
uncertainty affects clustering statistics, namely the power spectrum.
Our technique enables us to define as many galaxy populations as
wished, and to analyse to what extent those populations occupy the
same types of haloes. We explore this flexibility by computing the
power spectrum of a large number of galaxy populations (tracers),
selected on the basis of the colour—stellar mass diagram.

The paper is organized as follows: The [llustrisTNG data and the
chosen set of halo and galaxy properties are described in Section 2. In
Section 3, we explain how we applied NN to predict joint probability
distributions. Section 4 analyses the quality of the results obtained
with the NNs by comparing the predictions with the IlustrisTNG
catalogue. In Section 5, we present our results in terms of the
power spectra of several galaxy populations. Finally, we outline
our main conclusions in Section 6, and discuss our plans for future
improvements and applications.
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2 DATA

Our analysis is based on data from the IllustrisTNG magneto-
hydrodynamical cosmological simulation (Marinacci et al. 2018;
Naiman et al. 2018; Nelson et al. 2018, 2019; Pillepich et al.
2018a, b; Springel et al. 2018). This simulation suite, which was
generated using the AREPO moving-mesh code (Springel 2010), is
an improved version of the previous Illustris simulation (Genel et al.
2014; Vogelsberger et al. 2014a, b). IllustrisTNG features a variety
of updated subgrid models accounting for star formation, radiative
metal cooling, chemical enrichment from SNII, SNIa, and AGB stars,
and feedback mechanisms (including stellar and supermassive black
hole feedback). These models were calibrated to reproduce an array
of observational constraints, such as the z = 0 galaxy stellar mass
function and the cosmic star formation rate (SFR) density, to name a
few (see the aforementioned references for more information). The
IustrisTNG simulation adopts the standard Lambda cold dark matter
cosmology (Planck Collaboration XIII 2016), with parameters 2,
= 0.3089, Q, = 0.0486, Q5 = 0.6911, Hy = 100 A kms~! Mpc™!
with h = 0.6774, o3 = 0.8159, and n, = 0.9667.

The ML methodology that we developed in this work to reproduce
the halo—galaxy connection is applied to galaxy clustering in terms
of the power spectrum. For this reason, in order to minimize cosmic
variance (CV), we chose to analyse the largest box available in the
data base, TNG300, spanning a side length of 205/~ 'Mpc with
periodic boundary conditions. TNG300 contains 2500° DM particles
of mass 4.0 x 107 h~' Mg and 2500° gas cells of mass 7.6 x 10°
h™'Mg. The adequacy of TNG300 in the context of clustering
science has been extensively proven in a variety of analyses (see
e.g. Contreras et al. 2020a; Gu et al. 2020; Hadzhiyska et al. 2020b,
2021; Montero-Dorta et al. 2020b, 2021a, b; Shi et al. 2020; Favole
et al. 2022; Santi et al. 2022).

In this work, we employ both galaxy and DM halo information
from TNG300. DM haloes in the entire IllustrisTNG suite are
identified using a friends-of-friends algorithm based on a linking
length of 0.2 times the mean of the inter-particle separation (Davis
et al. 1985). As in Santi et al. (2022), the following halo properties
are used as input features to train the NNs:

(i) Virial mass (Myi;[h~" Mg]), which is computed by adding up
the mass of all gas cells and particles contained within the virial
radius R,; (based on a collapse density threshold of A. = 200).
In order to ensure that haloes are well resolved, we impose a mass
cut loglO(M\,ir[h*1 Mg]) > 10.5, corresponding to at least 500 DM
particles.

(1) Virial concentration (cyi ), defined in the standard way as the
ratio between the virial radius and the scale radius, i.e. ¢y;; = Ry;,/R;.
R; is obtained by fitting the DM density profiles of individual haloes
with an NFW profile (Navarro, Frenk & White 1997).

(iii) Halo spin (Apao), for which we follow the Bullock et al.
(2001) definition: Ango = |J1/v/2Myir Veir Ryir. Here, J and Vi, are
the angular momentum of the halo and its circular velocity at Ry,
respectively.

(iv) Halo age, parametrized as the half-mass formation redshift
Z12. This parameter corresponds to the redshift at which half of
the present-day halo mass has been accreted into a single subhalo
for the first time. The formation redshift is measured following the
progenitors of the main branch of the subhalo merger tree computed
with SUBLINK, which is initialized at z = 6.

(v) The overdensity around haloes on a scale of 3 4~! Mpc (83),
defined as the number density of subhaloes within a sphere of radius
R =3 h~! Mpc, normalized by the total number density of subhaloes
in the TNG300 box (e.g. Artale et al. 2018; Bose et al. 2019).
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On the other hand, subhaloes (i.e. gravitationally bound substruc-
tures) are identified in IllustrisTNG using the SUBFIND algorithm
(Springel et al. 2001; Dolag et al. 2009). Subhaloes containing a
non-zero stellar mass component are labelled as galaxies. Again,
following Santi et al. (2022) for consistency, TNG300 galaxies are
characterized in this work using the following basic properties:

(i) The stellar mass (M, [h~' Mg]), which includes all stellar
particles within the subhalo. In order to ensure that galaxies are
well resolved, we impose a mass cut loglo(M*[}f1 Mg]) = 8.75,
corresponding to at least 50 gas cells.

(i1) The colour g — i, computed from the rest-frame magnitudes,
which are obtained in [llustrisTNG by adding up the luminosities of
all stellar particles in the subhalo (Buser 1978). Note that the specific
choice of colour is rather arbitrary. We have checked that using other
combinations (i.e. g — r) provides similar results.

(iii) The specific star formation rate (sSFR [yr~'h]), which is the
SFR normalized by stellar mass. The SFR is computed by adding up
the SFRs of all gas cells in the subhalo. Note that around 14 per cent
of the galaxies at redshift z = 0 in TNG300 have SFR = 0. In order
to avoid numerical issues, we have adopted the same approach as
in Santi et al. (2022), assigning to these objects artificial values of
SFR, such that they end up distributed around log,,(sSFR[yr~! h]) =
—13.5.

(iv) The galaxy size, parametrized as the stellar (3D) half-mass
radius (Rf;)z[lf1 kpc]) —i.e. the comoving radius containing half of
the stellar mass in the subhalo.

3 METHODOLOGY

NNs are designed to learn how to map an instance, which is
characterized by some set of input features X, to a set of output
features Y, by weighting and combining the input features. These
weights are fitted by minimizing a loss function with some optimizer.

In this work, the input features are the halo properties and the
outputs are the galaxy properties introduced in Section 2. Starting
with a sample where the target value Y is known for all instances (the
TNG300 catalogue), we split it into training, validation, and test sets.
The training set is used to fit the model parameters (weights). The
validation set is used to monitor overfitting, i.e. to ensure that the
model is properly generalizing to data outside of the training set, and
to fit the model’s hyperparameters.' The test set remains completely
blind to the training and validating procedures, and can thus be used
to infer the performance of the model when applied to entirely new
instances. The training, validation, and test sets contain, respectively,
48, 12, and 40 per cent of the initial sample of 174 527 objects from
the TNG300 catalogue.

Our goal is to predict central galaxy properties from a set of halo
properties. In the context of ML, this would in principle fall in the
category of a supervised regression problem. However, traditional
regression models are designed to output single values, while any
given halo could host many different central galaxies (since the
set of halo properties that we use as inputs does not determine
exactly the outcome of the galaxy formation process in terms of
the precise values of the galaxy properties). This is reflected, as an
example, in the well-known scatter in the stellar-to-halo mass relation
(Wechsler & Tinker 2018; Stiskalek et al. 2022). Therefore, in order
to incorporate this uncertainty, we need a model that returns not only

'In an NN, the model’s parameters are the weights to be learned automatically,
while the hyperparameters are the number of layers, neurons, number of
epochs, etc., which are often chosen manually.
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a single best-estimate value for each galaxy property, but some proxy
for the probability distribution for those properties.

In this paper, we have addressed this issue by converting the
regression problem into a classification. The idea is to define K
classes by splitting each galaxy property into K intervals, or bins.
Just like in the usual classification tasks, the model will return a
score associated with each class (bin). These scores add up to one,
giving a probabilistic interpretation of the output. This approach
has been widely used, as an example, in the context of photometric
redshift estimation (Sadeh, Abdalla & Lahav 2016; Pasquet et al.
2019; Lima et al. 2022). We refer to our method, which is based on
training NNs classifiers, as NN¢jas.

As a starting point, we train four models to predict each galaxy
property individually as univariate distributions; i.e. we have separate
models to predict P(M.), P(g — i), P(sSFR), and P(R}7}). As we
discuss in Section 4, this approach is sufficient to recover the
overall distribution P(Y) for a given sample. However, this does not
guarantee, a priori, that the joint distributions are well reproduced.
Therefore, we proceed to predict jointly pairs of properties, namely
P(M,, g — i), P(M,, sSFR), P(g — i, sSFR), and P(R{}}, M.). Our
strategy is similar to the univariate P(Y) case: we make a grid in
the {Y;, Y»} subspace in such a way that the output corresponds
to pixels in this grid. Although in this paper we restrict ourselves
to only two galaxy properties when predicting joint distributions, a
similar approach could be used, in principle, to characterize galaxies
and define populations using an arbitrary number of properties. This
generalization will be implemented in an upcoming paper.

Unless otherwise stated, for all the results shown here we set K =
50 classes for each one of the central galaxy properties, in equally
spaced bins. For stellar mass, for example, this corresponds to bins
of 0.085 dex. We must draw attention to the fact that this choice
of binning is arbitrary. We have tried different numbers of bins,
finding similar results in terms of the recovery of the distributions.
Note that more refined versions of NNs that output distributions
without binning the properties, and thus keeping it as a regression
problem, already exist in the literature. In the context of photo-z
estimation, Lima et al. (2022), for example, compares different types
of NN that return distributions, such as Mixture Density Networks
(Bishop 1994), Bayesian NNs, and also NNs following a similar
strategy as in this work, with a binning classification scheme. Ho
et al. (2021) estimate the probability distribution of the dynamical
mass of galaxy clusters and also compare several types of NNs,
including a classifier that is similar to our NNj,. In the context of
the halo—galaxy connection, Stiskalek et al. (2022) model the stellar-
to-halo mass relation scatter with a Gaussian distribution and train an
ensemble of NN that predicts the mean and standard deviation. We
found the binned classification to be a simpler approach that works as
a proof of concept. A more careful exploration of alternative methods
is left as future refinements.

Throughout the analysis, we compare our NNj,s method with
the deterministic models developed by Santi et al. (2022), which we
use as our baseline. In that work, several ML models are combined
to return a final, consensus output for the same galaxy properties
described in Section 2. The two consensus estimators are built
from either the ‘Raw’ models, which were trained with the original
TNG300 sample, or the ‘SMOGN’ models, which were trained using
a data-augmented version of that data set. The SMOGN models were
developed because of the difficulty for Raw models to recover the
least frequent values of galaxy properties — i.e. to reproduce the tails
of the distributions. The SMOGN data augmentation technique is a
strategy to handle imbalanced data sets, whereby additional objects
are artificially introduced in the training sample in order to force the
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machine to give more importance to less represented objects (Kunz
2019).

The specifications of NN are described as follows. We use
the categorical cross-entropy loss function and the ADAM optimizer
(Kingma & Ba 2014) to train the networks. The architecture may
change depending on the galaxy properties to be predicted. In general,
our developed networks have a single intermediate layer, with a
number of neurons that typically depends on whether the output is a
univariate or a joint distribution. We use the L2 regularization, which
applies a penalty proportional to the square of the model’s weights.
The number of epochs (iterations) is constrained with an early-
stopping criterion based on the validation set loss. In the intermediate
layers, we used the rectified linear unit as activation function, while
in the output layer we use the Softmax function, which is similar to
the Sigmoid function, but it normalizes the output in such a way that
the scores of the K classes add up to one. In this way, the NN,
output works as a proxy for a probability in bins of galaxy properties.

4 RESULTS

Fig. 1 shows the distributions of the galaxies in the test set.
The first column is the truth table, the TNG300 catalogue. The
second column is the NN, prediction of univariate distributions,
i.e. galaxy properties predicted independently. With the univariate
distributions, we can compute the joint distributions as P(Y,)QP(Y>),
which are shown in the heatmap diagrams. The third column is the
NN,jass prediction for the joint distributions P(Y;, Y>), which can be
integrated to recover the univariate distributions P(Y) shown in the
marginal plots from the third column, i.e.

P(Y;) :/P(Y,-, Y;dy;. (1)

The univariate distributions predicted by NN, shown in black
solid lines in the second-column plots of Fig. 1, are in excellent
agreement with the true distributions from TNG300, shown in grey
shaded regions. They also reproduce fairly well the joint distribu-
tions P(Y;)®P(Y,) for most cases. The P(g — i)®P(sSFR) joint
distribution, however, fails to reproduce the shape of the distribution
for redder colours and lower sSFRs. According to this prediction,
red galaxies could have virtually any value of sSFR, while what
we actually observe in TNG300 is that as galaxies move from the
blue to the red peak, their sSSFRs decrease. This important feature is
recovered when NN, is trained to predict P(g — i, sSFR) jointly
(third column in Fig. 1).

The above result indicates that our input halo properties alone
are unable to predict accurately the correlations between colour and
sSFR. The model would need additional features in order to capture
this relation. It is interesting, however, that we can overcome this
limitation by predicting the joint distribution directly using only
the presented halo properties. This exercise indicates that, in order to
robustly assign galaxies to haloes, with all the properties consistently
correlated, the properties should be predicted together. Note that, in
principle, one could define galaxy populations based on as many
parameters as wished. Therefore, in the most general case, we would
have an N-dimensional distribution associated with each host halo.

As a complementary analysis, Fig. 2 shows two additional well-
known relations in the context of the halo—galaxy connection: the
stellar-to-halo mass relation, and the galaxy size—halo mass relation
obtained with TNG300 and with P(M,) and P(R{}}) predicted by
NNclass'

Figs 1 and 2 allow for a visual inspection of the results. In order to
quantify the similarity between the distributions, we have performed
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the Kolmogorov—Smirnov (KS) test (for more details, see Ivezié et al.
2014):

KS test values: A = max(|F; — F3|), 2)

where F| and F, are cumulative distributions. The results are shown
in Table 1. For comparison, we also show the values obtained with
our baseline models, Raw and SMOGN, from Santi et al. (2022).
Once again, we see that for most cases the independent prediction of
univariate distributions reproduces fairly well the joint distributions,
except for colour and sSFR. In all cases, NNy, provides significantly
lower values as compared to Raw and SMOGN.

So far, we have focused on the combined distributions for the
entire test sample. We now turn our attention to individual objects
and the probability distributions that our ML machinery predicts for
them. In particular, Fig. 3 displays, in a similar format to that of
Fig. 1, some examples of the joint probability distribution P(M,, g
— i) for three illustrative cases: a red object, a blue object, and an
object lying at the so-called green valley region (from left to right).
In each panel, the host halo mass is specified on the top, whereas
the true TNG300 values of stellar mass and colour are shown as the
dashed lines. As a reference, we also include in the marginal plots
the distributions of the objects in the test set within a bin of £0.1 in
halo mass around the values indicated on the top of the plots.

The first thing to notice from Fig. 3 is that the distributions are
significantly narrower along the x-axis, as compared to the y-axis.
This is of course expected, since stellar mass is the galaxy property
that displays a tighter relation with the halo properties (particularly
with halo mass), and therefore is the easiest to predict. It is also
noteworthy that not all distributions can be well approximated by
a Gaussian distribution. Some distributions are significantly skewed
or, depending on halo mass, even bimodal, reflecting the well-known
colour/sSFR bimodality of the galaxy population (e.g. Baldry et al.
2004).

The red galaxy on the left-hand panel shows very little scatter in
colour. This is typically the case for red galaxies hosted by haloes with
log,o(Myi:[h~! Mg]) > 12.5. By visually inspecting Figs 1 and 2, we
can get a sense as to why this happens: massive haloes are typically
populated by massive galaxies, since the scatter in the stellar-to-
halo mass relation is small. Massive galaxies are almost exclusively
very red, which explains why the machine predicts a very narrow
distribution of colours from the set of halo properties employed. The
situation is very different for the blue galaxy featured in the middle
panel. In this case, the predicted colour distribution is much broader
than that for the red galaxy. Here, the host halo mass is much smaller,
which implies a larger scatter in the stellar-to-halo mass relation. On
top of that, blue galaxies intrinsically display a wide range of colours.
All this uncertainty is captured by the machine in terms of a wider
colour distribution.

Finally, the green-valley galaxy on the right-hand panel of Fig. 3
represents the most extreme case of the three, where the colour
degeneracy produces a bimodal distribution. These objects are caught
between two intrinsically different populations, i.e. the blue cloud
and the red sequence. The analysis of individual distributions reveals
that these objects are the ones that display a weaker relation with
the properties of their host haloes (at least the ones analysed in this
work). As discussed in Santi et al. (2022), these objects exemplify
the most clear case where halo properties alone seem insufficient
to predict the colour/sSFR, thus emphasizing the advantages of our
probability-based methodology.

This probability distribution description on an individual object
basis allows us to explore the dependence of galaxy properties on
secondary halo properties at fixed halo mass (a dependence that
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Figure 1. Distributions of galaxy properties. From top to bottom: colour versus stellar mass, sSFR versus stellar mass, sSFR versus colour, and radius versus
stellar mass. The first column shows the true distributions from TNG300. The second column shows the distributions computed from the univariate distributions
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distributions shown in the third column plots were computed by marginalizing the joint distributions.
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Figure 2. Stellar-to-halo mass relation (top) and galaxy size-halo mass
relation (bottom) from the TNG300 catalogue (left) and from NNgjass
predictions (right).

is closely related to the so-called galaxy assembly bias effect; see
e.g. Wechsler & Tinker 2018; Sato-Polito et al. 2019; Montero-
Dorta et al. 2021b). In particular, we have analysed the dependence
of P(M,, g — i) on halo age at fixed halo mass for green-valley
objects. To this end, we selected objects in the test sample with
predicted colour within the range 0.80 < ¢ — i < 1.05 and halo
masses of 11.8 < loglo(Mvir[h_l Mg]) < 12.2 (we have checked
that choosing a narrower halo mass range would not alter our results
significantly). This subset was subsequently split by halo age (taking
the 15 and 85 per cent quantiles). For younger haloes, a stack of
all distributions still reveals some bimodality in colour, albeit with
a stronger preference for the blue peak. The predicted probability
distribution for green-valley galaxies in older haloes is, conversely,
much more skewed towards redder colours. The tail of the distribution
for these objects still covers the green valley, which means that in
some realizations these host haloes will be populated by a green-
valley central galaxy (although the probability for this to happen
is low). These results are reassuring in terms of the robustness of
our methodology, demonstrating that our probability description is
capable of capturing secondary halo dependences.

5 POWER SPECTRUM

With the help of the method presented in this work, we have greater
flexibility to define different tracers based on galaxy properties. In
this section, we explore the performance of NN in terms of
the accuracy with which we can reproduce the power spectra of
those tracers. We compute spectra for tracers in the test set, using
the PYTHON package NBODYKIT (Hand et al. 2018). For the truth
TNG300 catalogue, we use the positions of the central galaxies, but
for the predictions we use the positions of the host haloes. Once
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again, we compare NNj,¢s With the baseline models from Santi et al.
(2022). As a complementary analysis, in Appendix B we compare
the power spectra of tracers defined according to the same criteria of
that previous work, which are based on individual galaxy properties.

Since TNG300 is a single box, the uncertainties of the spectrum
on each bandpower k;, for each tracer o, are computed according to
the theoretical (Gaussian) covariance (Feldman, Kaiser & Peacock
1994), i.e.

o2 2 [(14iigP\’ 3
P2, VV\ igPui ’
with V = 4mk? Ak /(27 )%, and the residuals are defined as
(P‘frled _ P{;l:Ii\IG3OO> 2
5 . 4

[

ol

Our choice of tracers is driven by the fact that the target selection
in galaxy surveys often relies on the analysis of colour—-magnitude
diagrams (see e.g. Eisenstein et al. 2001, 2011; Zhou et al. 2020).
One of the most common ways to define galaxy populations is in
terms of the red sequence and the blue cloud, which can also be
clearly distinguished in the colour—stellar mass diagram, as shown in
Fig. 1. They are two distinct populations with different biases, hence
their interest for studies of large-scale structure.

In a similar fashion, we defined seven tracers (@ = 1, ..., 7)
based on the colour—stellar mass diagram, P(M,., g — i). We split red
galaxies (g — i > 1.05) into lower (o = 1) and higher (o« = 2) stellar
masses. Conversely, ‘green-valley’ galaxies (defined as 0.80 < g — i
< 1.05) are split into three mass bins, leading to populations o = 3,
4, 5. Finally, blue galaxies (g — i < 0.8) are separated into lower («
= 6) and higher (o« = 7) stellar mass bins. This selection is outlined
in Table 2, and it is represented in the lower right corner of Fig. 4.

An interesting feature of the probabilistic approach is that each
galaxy is generated through a realization of a probability distribution
spreading over many bins. As a consequence, we can build many
catalogues of central galaxy properties by drawing values yy, y, from
P(Y,, Y>). We have performed r = 42 realizations of P(M,, g — i),
leading to as many values of M, and g — i for each halo. We then
compute the spectrum of each of these samples, and from that the
mean and variance of the spectra. For the mean spectrum P, ,;, we
compute the uncertainties according to equation (3).

Fig. 4 shows the power spectra and residuals of the seven tracers
defined in terms of P(M,, g — i) (see Table 2). Tracers o = 3,
4 are relatively rare; hence, their corresponding regions in colour—
stellar mass space are poorly populated by single-point estimators.
Therefore, a model that predicts galaxies in these regimes improves
the quality of the fit considerably —i.e. it reduces x>. We had already
seen an improvement with the SMOGN models, which better recover
this region as compared to the Raw models, but with NN, this
improvement is even more pronounced. There are only a few o =
5 galaxies in TNG300, which makes this population very sparse. In

Table 1. KS test values for univariate (1D) and joint (2D) distributions computed with the NNs and the baseline models.

IDKS P(Y) Raw  SMOGN 2D KS POYD®P(Y2)  P(Y1,Y») Raw SMOGN
P(M,) 0.002 0.064 0.064 P(M,, g — i) 0.010 0.005 0.183 0.163
P(g — i) 0.004 0.181 0.116 P(M., sSFR) 0.012 0.009 0.253 0.209
P(sSFR) 0.004 0213 0.168 P(g — i, sSFR) 0.110 0.009 0.266 0.176
P(R{’)) 0.009 0217 0.110 P(M,. R{})) 0.015 0.007 0217 0.150
- - - P(Myir, My.) 0.008 - 0.064 0.064
- - - P(Myic, R{)) 0.012 - 0217 0.110
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Figure 3. P(M.,, g — i) for individual objects predicted by NNjass. The dashed green lines show the true values for stellar mass and colour from TNG300. The
shaded regions in the marginal plots are the distributions of objects with similar halo mass as indicated on the top of the corresponding panel.

Table 2. Criteria for splitting central galaxies by stellar mass and colour, in
order to define the tracers used in the power spectrum analysis.

Tracer log (M.[h~" Mg]) g—i # Objects
a=1 (9.5,10.5] > 1.05 4073
a=2 > 10.5 > 1.05 5207
a=3 <95 (0.80, 1.05] 4786
a=4 (9.5,10.5] (0.80, 1.05] 5950
a=5 > 10.5 (0.80, 1.05] 1267
a=6 <95 <0.80 29 695
a=7 (9.5,10.5] <0.80 18 432

particular, it has the largest variance over realizations. Conversely, all
models are equally good at reproducing the power spectra of tracer
populations closer to the peaks of the probability distributions: for «
=1,2,6,and 7, x?is comparable between all models.

As discussed earlier, we are able to draw multiple samples from the
probabilities predicted by NN.s. Each realization leads to slightly
different power spectra, as can be seen in Fig. 4. By computing the
variance of the multiple P(k), we can assess the uncertainties due
to the intrinsic stochasticity in the halo—galaxy connection. Fig. 5
compares the relative errors 02/ Plygsoo(k) computed using ody,
from equation (3) (which encodes the uncertainty due to CV), with
UI\ZINCIM , which encodes the statistical uncertainties in the halo—galaxy
connection estimated with NNj.ss. As we already saw in Fig. 4, the
CV error bars are typically larger than the scatter in the power spectra
due to the multiple realizations of the NN probabilities. The
contribution of oy seems more relevant for the tracer population
5, which is very sparse. However, for all tracers (Tév decreases
for smaller scales (due to the Fourier bin volume), while onn,,,
remains approximately constant. Therefore, the relative contribution
of onng,, for the total error budget of the power spectra appears to
become more important at smaller scales.

Even though we see no evidence of a bias associated with this
additional source of statistical uncertainties, the stochastic nature of
the relationship between galaxies and their haloes may present further
challenges for multitracer analyses of LSS (McDonald & Seljak
2009; Seljak 2009). The advantages of the multitracer technique are
reliant upon the partial cancellation of CV that results from clustering
measurements from different galaxy types that are assumed to
reflect the same underlying DM density field (in that respect, see
also Abramo & Leonard 2013; Abramo, Secco & Loureiro 2016).
The ‘stochastic bias’ associated with the nature of the galaxy—
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halo connection can dilute some of the expected CV cancellation.
However, that stochastic component seems to affect mostly the
power spectra on small scales, where non-linear effects already limit
our ability to employ the multitracer technique effectively (see e.g.
Montero-Dorta et al. 2020a).

6 DISCUSSION AND CONCLUSIONS

Although there is an obvious relation between the baryonic and
DM components of haloes, there is also mounting evidence that the
properties of haloes alone are insufficient to reproduce the properties
of galaxies, since the latter are shaped by a variety of galaxy
formation processes. On the other hand, ML regression models
are traditionally designed to reproduce single-value statistics, and
thus are ill-equipped to encode the intrinsic scatter in the halo—
galaxy connection. Building on the recent work of Santi et al.
(2022), here we use the TNG300 hydrodynamical simulation in
combination with NNs to map the connection between the properties
of central galaxies and the properties of their hosting haloes. As in
the aforementioned work, NNs are trained to reproduce the stellar
mass, g — i colour, sSFR, and radius of TNG300 galaxies based
on a set of halo/environmental properties that include virial mass,
concentration, formation redshift, spin, and overdensity (computed
over scales of 3 4~! Mpc). In order to alleviate the deficiencies of ML
deterministic regression models, we have tested a different approach
for the first time in the context of the halo—galaxy connection. The
NNs are now trained to predict probability distributions instead of
single-value statistics by means of a binning classification scheme. In
essence, the distributions of galaxy properties are split into K narrow
bins so that the NNs can associate a score to each of the K classes.
This is performed in such a way that the output can be used as a proxy
for the probability distributions of the central galaxy properties.

We have shown that this approach is in fact capable of produc-
ing bivariate distributions of galaxy properties, i.e. P(Y;, Y2), in
outstanding agreement with those from TNG300 (here, {Y;, Y»}
is any pair of galaxy properties). These joint distributions can be
compared with the product of the two 1D (disjoint) distributions,
P(Yy) and P(Y>). For the joint distributions, we employ 2D K x K
grids, representing the binned galaxy properties, where each pixel
on the grid corresponds to a class. In either case, predicting the
probability distributions yields significantly better results compared
with the deterministic approach (Santi et al. 2022), as both a visual
inspection and the 2D KS test reveal. As a reference, our 2D KS
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Figure 4. Power spectra and residuals for seven tracers selected on the basis of the colour—stellar mass diagram (bottom right panel). The green solid lines
correspond to TNG300, while the light purple solid lines correspond to spectra from r = 42 samples drawn from the probabilities predicted by NN¢jass. The
dark purple, thick dashed lines correspond to the mean of those realizations. The baseline models are shown in orange: darker dotted lines correspond to the
Raw model and lighter dotted—dashed lines correspond to the SMOGN model.
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test for the joint distributions P(Y, Y») yields performance results diagrams for the galaxy properties. As an illustration, we have anal-
that are better by factors of 10-30 as compared to those reported ysed the individual joint distributions of stellar mass and colour, and
in Santi et al. (2022). We have also checked that predicting galaxy verified that the distributions for red galaxies, particularly for those
pairs directly is particularly advantageous for the colour—sSFR joint that live in massive haloes, are significantly more concentrated than
distribution, where the stellar mass, the main anchor of the halo— those for blue and green-valley objects. For the latter, the individual
galaxy connection, is not included. distributions can even become bimodal in certain halo mass ranges.

An important subproduct of our analysis is the joint distributions This is a robustness test for our methodology, showing that these
for individual galaxies, which can be understood as the probability individual distributions are good estimators of the uncertainty that
distributions that an object occupies a given location on the 2D results from attempting to predict galaxy properties from incomplete
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(halo) information. The main advantages of our method are that it
provides a more complete description of the interconnected relations
between galaxy and halo properties, as compared to single-value ML
approaches, and that it can be easily implemented in cosmological
and galaxy formation models.

As an application of our methodology, we have shown that our
predictions are capable of reproducing with unprecedented precision
the power spectra of any given number of tracers defined based on the
colour—stellar mass diagram (we showed results for seven tracers, but
the analysis can be extended to more galaxy populations). We have
also checked that the statistical uncertainty in our models (which
can be obtained by sampling the distributions several times, creating
multiple catalogues) is often small compared with the uncertainty that
emanates from CV (particularly on large scales). In this sense, our
method is clearly advantageous for cosmological studies employing
a high number of tracers and/or underrepresented populations, as
compared with the more traditional single-value approaches (see
Santi et al. 2022, for comparison). These advantages can be exploited
in the context of multitracer cosmological analyses, where clustering
information from multiple galaxy population and redshift ranges is
combined in order to reduce the uncertainties in the estimation of the
power spectrum and thus the bias and cosmological parameters (e.g.
Abramo & Leonard 2013; Abramo et al. 2016; Montero-Dorta et al.
2020a; Abramo, Ferri & Tashiro 2022).

One interesting application of our method is to paint galaxies
on to haloes in DM-only simulations. As we have discussed in
this work, when central galaxy properties are predicted jointly,
their correlations are in agreement with those from hydrodynamical
simulations. However, in order to extend our analysis to a higher
number of dimensions, i.e. to predict joint distributions of three or
more properties, or to extend the approach to satellite galaxies, it is
necessary to optimize the discretization of the galaxy distributions.
Presently, our method can become computationally inefficient for
this purpose, as so far we are considering bins of equal size across
the galaxy property diagrams. Moreover, by categorizing the galaxy
properties and treating the bins as individual classes, one may
lose the information that nearby bins are more similar than distant
ones. Therefore, using additional metrics and trying alternative loss
functions to quantify the difference between the distributions may
be helpful, especially when handling higher dimensions (see e.g.
Stiskalek et al. 2022). Follow-up work will be devoted to improving
this methodology in order to generalize the analysis.

Finally, the flexibility of our method in terms of reproducing
both the clustering and internal properties of virtually any galaxy
population with precision may have applications in the context of
galaxy assembly bias, i.e. the secondary dependences of galaxy
clustering at fixed halo mass (see e.g. Lin et al. 2016; Montero-
Dorta et al. 2017; Zu et al. 2017; Niemiec et al. 2018; Zentner et al.
2019; Obuljen, Percival & Dalal 2020; Salcedo et al. 2022; Wang
et al. 2022). In particular, recent attempts to probe the effect with
observations (Salcedo et al. 2022; Wang et al. 2022) have employed
forward-modelling techniques using specifically generated galaxy
mocks. Our methodology and statistical descriptions seem ideal to
be incorporated into these models.
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APPENDIX A: SINGLE VALUE ESTIMATION

In this appendix, we discuss the results of the NN, in terms of
single-point estimation scores. Throughout the paper, our analysis
focuses on the performance in terms of how well we can recover the
distributions. Since we do not have a single value associated with
each data set instance, but a distribution, one can sample several
times from this distribution in order to estimate the most probable
value, and compute single-point estimation metrics with it. Once
again, we take the average of r = 42 realizations of each predicted
galaxy property and calculate the Pearson correlation coefficient
(PCC) between the true and estimated values as

Cov(ypred , ytruC)

PCC = (A1)

0, ypred 0, ytrue

Fig. Al shows the PCC score as a function of the number of
realizations and also the values of the baseline models for the
four galaxy properties. In this exercise, we sample from univariate
distributions P(Y) instead of joint distributions. NN provides
results comparable to the single-point estimators Raw and SMOGN
as the number of realizations increases, which indicates that NNjas
are also good maximum likelihood estimators.
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Figure Al. PCC of NN (solid lines) as a function of the number of
realizations of P(Y), Y = M,, g — i, sSFR, and R{’. The PCC values of the
baseline models Raw and SMOGN are shown as dotted and squared markers,
respectively.
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APPENDIX B: POWER SPECTRUM:
ADDITIONAL RESULTS

In this appendix, we show the power spectrum of the tracers defined
in Santi et al. (2022) (see Fig. B1). The galaxies are divided into
two populations based on each of the properties. The univariate
distributions can be obtained from different joint distributions, by
marginalizing them (see equation 1). Stellar mass can be obtained
from P(M,., g — i), P(M,, sSFR), and P(M., R{})), colour can be
obtained from P(M,, g — i) and P(g — i, sSFR), sSFR can be
obtained from P(g — i, sSFR) and P(M,, sSFR), and the radius can
be obtained from P(M,, Rg’;)z). Once again, for NNj,ss We show r =
42 realizations as well as the mean of the spectra of all r samples.
We see that for these tracers there is no clear advantage of the NN,
over the Raw model: in most cases, NNj,ss performs similar to the
Raw models, although for sSFR the results for NN are slightly
worse (which is not entirely unexpected, since sSFR is a particularly
difficult property to predict based only on the halo properties that we
take into account). Note that here we are computing the average of
the spectra of many realizations of the predicted distributions, as in
Fig. 4. In this way, we can explore the advantage of having a tool
that recovers the complete range of possible values. In order to have
a more straightforward comparison with the single-point estimators,
one can compute the spectrum of the tracers defined based on the
maximum likelihood values of galaxy properties, as in Appendix A.
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Figure B1. Power spectrum and residuals of two tracers defined by splitting each galaxy property. The higher bias tracers are shown in red, and the lower bias
tracers are shown in blue. The properties are obtained by marginalizing the joint distributions and can thus be obtained with more than one distribution. The first
column shows the results for stellar mass and colour obtained with P(M,, g — i). The second column shows the results for stellar mass and sSFR obtained with
P(M,, sSFR). The third column shows the results for colour and sSFR obtained with P(g — i, sSFR). The fourth column shows the results for stellar mass and
radius obtained with P(M,, Rf;)z). The power spectrum of each NNjass realization is shown as solid lines. The mean NN, spectra are shown as dashed lines

and the Raw model spectra are shown as dotted lines.
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