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A B S T R A C T 

The relationship between galaxies and haloes is central to the description of galaxy formation and a fundamental step towards 
extracting precise cosmological information from galaxy maps. Ho we ver, this connection involves several complex processes 
that are interconnected. Machine Learning methods are flexible tools that can learn complex correlations between a large number 
of features, but are traditionally designed as deterministic estimators. In this work, we use the IllustrisTNG300-1 simulation 

and apply neural networks in a binning classification scheme to predict probability distributions of central galaxy properties, 
namely stellar mass, colour, specific star formation rate, and radius, using as input features the halo mass, concentration, spin, 
age, and the o v erdensity on a scale of 3 h 

−1 Mpc. The model captures the intrinsic scatter in the relation between halo and galaxy 

properties, and can thus be used to quantify the uncertainties related to the stochasticity of the galaxy properties with respect 
to the halo properties. In particular, with our proposed method, one can define and accurately reproduce the properties of the 
different galaxy populations in great detail. We demonstrate the power of this tool by directly comparing traditional single-point 
estimators and the predicted joint probability distributions, and also by computing the power spectrum of a large number of 
tracers defined on the basis of the predicted colour–stellar mass diagram. We show that the neural networks reproduce clustering 

statistics of the individual galaxy populations with excellent precision and accuracy. 

Key words: galaxies: statistics – cosmology: large-scale structure of Universe – methods: data analysis – methods: statistical. 
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 I N T RO D U C T I O N  

haracterizing the connection between the properties of galaxies and
hose of the underlying population of dark matter (DM) haloes is one
f the most crucial aspects to understand the large-scale structure
LSS) of the Universe. This link not only encapsulates fundamental
nformation about the process of galaxy formation, but it is also a
rucial step to optimize the extraction of cosmological constraints
rom galaxy maps. 

The halo–galaxy connection is nowadays investigated using a
ariety of techniques (see e.g. Wechsler & Tinker 2018 ). On the
ne hand, empirical methods use DM-only simulations as the basis
n top of which different analytical prescriptions are implemented
n order to establish that connection. These techniques include
ubhalo abundance matching (e.g. Conroy, Wechsler & Kravtsov
006 ; Behroozi, Conroy & Wechsler 2010 ; Trujillo-Gomez et al.
011 ; Fa v ole et al. 2016 , 2022 ; Guo et al. 2016 ; Contreras, Angulo
 Zennaro 2020a , b ; Hadzhiyska et al. 2021 ), halo occupation

istributions (e.g. Berlind & Weinberg 2002 ; Zehavi et al. 2005 ,
018 ; Artale et al. 2018 ; Bose et al. 2019 ; Hadzhiyska et al. 2020a ;
u, Zehavi & Contreras 2021 ), and empirical forward modelling (e.g.
ecker 2015 ; Moster, Naab & White 2018 ; Behroozi et al. 2019 ). On

he other hand, it is possible to model, with varying degrees of detail,
 E-mail: natalia.villa.rodrigues@usp.br 
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he physical mechanisms that shape the process of galaxy formation.
n this context, hydrodynamical simulations (e.g. Somerville & Dav ́e
015 ; Naab & Ostriker 2017 ; Pillepich et al. 2018a , b ; Springel
t al. 2018 ; Villaescusa-Navarro et al. 2021 , 2022 ) are perhaps the
ost ambitious efforts. These models employ known physics to

imulate, at a subgrid level, a variety of processes that are related to
alaxy formation such as star formation, radiative metal cooling, and
upernova, stellar, and black hole feedback (for reviews on this, see
omerville & Dav ́e 2015 ; Naab & Ostriker 2017 ). This modelling
an also be approached from a semi-analytical, less computationally
emanding, perspective. These semi-analytical models (e.g. White
 Frenk 1991 ; Guo et al. 2013 ) employ physically moti v ated recipes

o mimic the galaxy formation processes. 
In this paper, we investigate the halo–galaxy connection from a
achine learning (ML) perspective. The issue of the halo–galaxy

onnection has been addressed using ML by many works (e.g.
amdar, Turk & Brunner 2016 ; Agarwal, Dav ́e & Bassett 2018 ;
alderon & Berlind 2019 ; Jo & Kim 2019 ; Man et al. 2019 ; Yip
t al. 2019 ; Zhang et al. 2019 ; Kasmanoff et al. 2020 ; Delgado et al.
021 ; McGibbon & Khochfar 2021 ; Shao et al. 2021 ; de Andres et al.
022 ; Jespersen et al. 2022 ; Lo v ell et al. 2022 ; Stiskalek et al. 2022 ;
hittenden & Tojeiro 2023 ). In de Santi et al. ( 2022 ), we provide
n ML suite combining some of the most po werful, well-kno wn
odels in the literature to predict central galaxy properties using

ost halo properties. All the applied methods, ho we ver, are designed
o return a single value for each galaxy property, independently of the
© 2023 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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emaining properties. Ho we v er, there are man y comple x interrelated
rocesses involved in the formation and evolution of galaxies, and 
heir properties cannot be precisely determined by halo properties 
lone. Therefore, a model that proposes to map the relation between 
alaxies and host haloes should encode not only the correlations 
etween galaxy properties, but also the uncertainties due to the 
tochastic aspects of galaxy formation. In other words, any given 
alo could host a central galaxy with a variety of properties and,
ence, a model should return joint probability distributions for the 
ossible values of those galaxy properties, instead of a single one. 
The ML suite from our previous work (Santi et al. 2022 ) provided

ncouraging results in terms of single-point estimation metrics, such 
s the Pearson correlation coefficient between true and predicted 
alues, especially for stellar mass, which is highly correlated with 
alo mass. Ho we ver, deterministic models that try to predict indi-
idual galaxy properties can be biased towards the most frequent 
alues, and thus fail to reco v er the o v erall distributions of the galaxy
roperties. In that paper, this issue is treated as an imbalanced data
roblem; i.e. despite of the fact that different output values could 
e associated with some fixed set of halo properties, the machine 
ends to assign the most frequent values. To address this problem, we
ade use of a data augmentation technique to increase the weight 

f the less represented instances, which allowed us to better reco v er
he underrepresented populations, but still in a way that each halo is
ssigned a single, individual value for each central galaxy property 
Santi et al. 2022 ). 

In this work, we proceed by predicting probability distributions 
ith neural networks (NNs) with a binning classification scheme, 
hich we refer to as NN class , for the same central galaxy properties

s Santi et al. ( 2022 ), namely stellar mass, g − i colour, specific star
ormation rate (sSFR), and galaxy radius. This not only enables 
s to reco v er the o v erall distributions of the galaxy properties
rom the IllustrisTNG300-1 (hereafter, TNG300) sample, but also 
o capture the intrinsic scatter in the halo–galaxy mapping by 
roviding, for each halo, the probability distributions associated with 
ts central galaxy properties. We also train NN class to predict the 
alaxy properties jointly, finding that the joint distributions reco v er 
orrelations that are lost when predicting uni v ariate distributions 
ndependently. ML probability-based descriptions have been used in 
elated contexts, in particular with NNs, such as photometric redshift 
stimation (e.g. Lima et al. 2022 ), dynamical mass of galaxy cluster
stimation (e.g. Ramanah et al. 2020 ; Ho et al. 2021 ), and recently
n the halo–galaxy connection (e.g. Stiskalek et al. 2022 ). 

In order to study how NN class captures the intrinsic stochasticity in 
he halo–galaxy connection, we analyse the shape of the distributions 
f individual galaxies, which gives some insights into the contribu- 
ion of secondary halo properties. Moreo v er, we analyse how this
ncertainty affects clustering statistics, namely the power spectrum. 
ur technique enables us to define as many galaxy populations as
ished, and to analyse to what extent those populations occupy the 

ame types of haloes. We explore this flexibility by computing the 
ower spectrum of a large number of galaxy populations (tracers), 
elected on the basis of the colour–stellar mass diagram. 

The paper is organized as follows: The IllustrisTNG data and the 
hosen set of halo and galaxy properties are described in Section 2 . In
ection 3 , we explain how we applied NNs to predict joint probability
istributions. Section 4 analyses the quality of the results obtained 
ith the NNs by comparing the predictions with the IllustrisTNG 

atalogue. In Section 5 , we present our results in terms of the
ower spectra of several galaxy populations. Finally, we outline 
ur main conclusions in Section 6 , and discuss our plans for future
mpro v ements and applications. 
 DATA  

ur analysis is based on data from the IllustrisTNG magneto- 
ydrodynamical cosmological simulation (Marinacci et al. 2018 ; 
aiman et al. 2018 ; Nelson et al. 2018 , 2019 ; Pillepich et al.
018a , b ; Springel et al. 2018 ). This simulation suite, which was
enerated using the AREPO moving-mesh code (Springel 2010 ), is 
n impro v ed v ersion of the previous Illustris simulation (Genel et al.
014 ; Vogelsberger et al. 2014a , b ). IllustrisTNG features a variety
f updated subgrid models accounting for star formation, radiative 
etal cooling, chemical enrichment from SNII, SNIa, and AGB stars, 

nd feedback mechanisms (including stellar and supermassive black 
ole feedback). These models were calibrated to reproduce an array 
f observational constraints, such as the z = 0 galaxy stellar mass
unction and the cosmic star formation rate (SFR) density, to name a
ew (see the aforementioned references for more information). The 
llustrisTNG simulation adopts the standard Lambda cold dark matter 
osmology (Planck Collaboration XIII 2016 ), with parameters �m 

 0.3089, �b = 0.0486, �� 

= 0 . 6911, H 0 = 100 h km s −1 Mpc −1 

ith h = 0.6774, σ 8 = 0.8159, and n s = 0.9667. 
The ML methodology that we developed in this work to reproduce

he halo–galaxy connection is applied to galaxy clustering in terms 
f the power spectrum. For this reason, in order to minimize cosmic
ariance (CV), we chose to analyse the largest box available in the
ata base, TNG300, spanning a side length of 205 h 

−1 Mpc with
eriodic boundary conditions. TNG300 contains 2500 3 DM particles 
f mass 4.0 × 10 7 h 

−1 M � and 2500 3 gas cells of mass 7.6 × 10 6 

 

−1 M �. The adequacy of TNG300 in the context of clustering
cience has been e xtensiv ely pro v en in a variety of analyses (see
.g. Contreras et al. 2020a ; Gu et al. 2020 ; Hadzhiyska et al. 2020b ,
021 ; Montero-Dorta et al. 2020b , 2021a , b ; Shi et al. 2020 ; Fa v ole
t al. 2022 ; Santi et al. 2022 ). 

In this work, we employ both galaxy and DM halo information
rom TNG300. DM haloes in the entire IllustrisTNG suite are 
dentified using a friends-of-friends algorithm based on a linking 
ength of 0.2 times the mean of the inter-particle separation (Davis
t al. 1985 ). As in Santi et al. ( 2022 ), the following halo properties
re used as input features to train the NNs: 

(i) Virial mass ( M vir [ h 

−1 M �]), which is computed by adding up
he mass of all gas cells and particles contained within the virial
adius R vir (based on a collapse density threshold of � c = 200).
n order to ensure that haloes are well resolved, we impose a mass
ut log 10 ( M vir [ h 

−1 M �]) ≥ 10 . 5, corresponding to at least 500 DM
articles. 
(ii) Virial concentration ( c vir ), defined in the standard way as the

atio between the virial radius and the scale radius, i.e. c vir = R vir / R s .
 s is obtained by fitting the DM density profiles of individual haloes
ith an NFW profile (Navarro, Frenk & White 1997 ). 
(iii) Halo spin ( λhalo ), for which we follow the Bullock et al.

 2001 ) definition: λhalo = | J | / √ 

2 M vir V vir R vir . Here, J and V vir are
he angular momentum of the halo and its circular velocity at R vir ,
espectively. 

(iv) Halo a g e , parametrized as the half-mass formation redshift
 1/2 . This parameter corresponds to the redshift at which half of
he present-day halo mass has been accreted into a single subhalo
or the first time. The formation redshift is measured following the
rogenitors of the main branch of the subhalo merger tree computed
ith SUBLINK , which is initialized at z = 6. 
(v) The overdensity around haloes on a scale of 3 h −1 Mpc ( δ3 ),

efined as the number density of subhaloes within a sphere of radius
 = 3 h −1 Mpc, normalized by the total number density of subhaloes

n the TNG300 box (e.g. Artale et al. 2018 ; Bose et al. 2019 ). 
MNRAS 522, 3236–3247 (2023) 
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On the other hand, subhaloes (i.e. gravitationally bound substruc-
ures) are identified in IllustrisTNG using the SUBFIND algorithm
Springel et al. 2001 ; Dolag et al. 2009 ). Subhaloes containing a
on-zero stellar mass component are labelled as g alaxies. Ag ain,
ollowing Santi et al. ( 2022 ) for consistency, TNG300 galaxies are
haracterized in this work using the following basic properties: 

(i) The stellar mass ( M ∗ [ h 

−1 M �]), which includes all stellar
articles within the subhalo. In order to ensure that galaxies are
ell resolved, we impose a mass cut log 10 ( M ∗[ h 

−1 M �]) ≥ 8 . 75,
orresponding to at least 50 gas cells. 

(ii) The colour g − i , computed from the rest-frame magnitudes,
hich are obtained in IllustrisTNG by adding up the luminosities of

ll stellar particles in the subhalo (Buser 1978 ). Note that the specific
hoice of colour is rather arbitrary. We have checked that using other
ombinations (i.e. g − r ) provides similar results. 

(iii) The specific star formation rate (sSFR [yr −1 h ]), which is the
FR normalized by stellar mass. The SFR is computed by adding up

he SFRs of all gas cells in the subhalo. Note that around 14 per cent
f the galaxies at redshift z = 0 in TNG300 have SFR = 0. In order
o a v oid numerical issues, we ha ve adopted the same approach as
n Santi et al. ( 2022 ), assigning to these objects artificial values of
FR, such that they end up distributed around log 10 (sSFR[yr −1 h ]) =
13 . 5. 
(iv) The galaxy size , parametrized as the stellar (3D) half-mass

adius ( R 

( ∗) 
1 / 2 [ h 

−1 kpc ]) – i.e. the comoving radius containing half of
he stellar mass in the subhalo. 

 M E T H O D O L O G Y  

Ns are designed to learn how to map an instance, which is
haracterized by some set of input features X , to a set of output
eatures Y , by weighting and combining the input features. These
eights are fitted by minimizing a loss function with some optimizer.
In this work, the input features are the halo properties and the

utputs are the galaxy properties introduced in Section 2 . Starting
ith a sample where the target value Y is known for all instances (the
NG300 catalogue), we split it into training, validation, and test sets.
he training set is used to fit the model parameters (weights). The
alidation set is used to monitor o v erfitting, i.e. to ensure that the
odel is properly generalizing to data outside of the training set, and

o fit the model’s hyperparameters. 1 The test set remains completely
lind to the training and validating procedures, and can thus be used
o infer the performance of the model when applied to entirely new
nstances. The training, validation, and test sets contain, respectively,
8, 12, and 40 per cent of the initial sample of 174 527 objects from
he TNG300 catalogue. 

Our goal is to predict central galaxy properties from a set of halo
roperties. In the context of ML, this would in principle fall in the
ategory of a supervised regression problem. Ho we ver, traditional
egression models are designed to output single values, while any
iven halo could host many different central galaxies (since the
et of halo properties that we use as inputs does not determine
xactly the outcome of the galaxy formation process in terms of
he precise values of the galaxy properties). This is reflected, as an
xample, in the well-known scatter in the stellar-to-halo mass relation
Wechsler & Tinker 2018 ; Stiskalek et al. 2022 ). Therefore, in order
o incorporate this uncertainty, we need a model that returns not only
NRAS 522, 3236–3247 (2023) 

 In an NN, the model’s parameters are the weights to be learned automatically, 
hile the hyperparameters are the number of layers, neurons, number of 

pochs, etc., which are often chosen manually. 

d  

l  

o  

s  

a  
 single best-estimate value for each galaxy property, but some proxy
or the probability distribution for those properties. 

In this paper, we have addressed this issue by converting the
egression problem into a classification. The idea is to define K
lasses by splitting each galaxy property into K intervals, or bins.
ust like in the usual classification tasks, the model will return a
core associated with each class (bin). These scores add up to one,
iving a probabilistic interpretation of the output. This approach
as been widely used, as an example, in the context of photometric
edshift estimation (Sadeh, Abdalla & Lahav 2016 ; Pasquet et al.
019 ; Lima et al. 2022 ). We refer to our method, which is based on
raining NNs classifiers, as NN class . 

As a starting point, we train four models to predict each galaxy
roperty individually as univariate distributions; i.e. we have separate
odels to predict P ( M ∗) , P ( g − i) , P ( sSFR ) , and P ( R 

( ∗) 
1 / 2 ). As we

iscuss in Section 4 , this approach is sufficient to reco v er the
 v erall distribution P ( Y ) for a given sample. However, this does not
uarantee, a priori, that the joint distributions are well reproduced.
herefore, we proceed to predict jointly pairs of properties, namely
 ( M ∗, g − i ), P ( M ∗, sSFR), P ( g − i , sSFR), and P ( R 

( ∗) 
1 / 2 , M ∗). Our

trategy is similar to the uni v ariate P ( Y ) case: we make a grid in
he { Y 1 , Y 2 } subspace in such a way that the output corresponds
o pixels in this grid. Although in this paper we restrict ourselves
o only two galaxy properties when predicting joint distributions, a
imilar approach could be used, in principle, to characterize galaxies
nd define populations using an arbitrary number of properties. This
eneralization will be implemented in an upcoming paper. 
Unless otherwise stated, for all the results shown here we set K =

0 classes for each one of the central galaxy properties, in equally
paced bins. For stellar mass, for example, this corresponds to bins
f 0.085 dex. We must draw attention to the fact that this choice
f binning is arbitrary. We have tried different numbers of bins,
nding similar results in terms of the reco v ery of the distributions.
ote that more refined versions of NNs that output distributions
ithout binning the properties, and thus keeping it as a regression
roblem, already exist in the literature. In the context of photo- z
stimation, Lima et al. ( 2022 ), for example, compares different types
f NNs that return distributions, such as Mixture Density Networks
Bishop 1994 ), Bayesian NNs, and also NNs following a similar
trategy as in this work, with a binning classification scheme. Ho
t al. ( 2021 ) estimate the probability distribution of the dynamical
ass of galaxy clusters and also compare several types of NNs,

ncluding a classifier that is similar to our NN class . In the context of
he halo–galaxy connection, Stiskalek et al. ( 2022 ) model the stellar-
o-halo mass relation scatter with a Gaussian distribution and train an
nsemble of NNs that predicts the mean and standard deviation. We
ound the binned classification to be a simpler approach that works as
 proof of concept. A more careful exploration of alternative methods
s left as future refinements. 

Throughout the analysis, we compare our NN class method with
he deterministic models developed by Santi et al. ( 2022 ), which we
se as our baseline. In that work, several ML models are combined
o return a final, consensus output for the same galaxy properties
escribed in Section 2 . The two consensus estimators are built
rom either the ‘Raw’ models, which were trained with the original
NG300 sample, or the ‘SMOGN’ models, which were trained using
 data-augmented version of that data set. The SMOGN models were
eveloped because of the difficulty for Raw models to reco v er the
east frequent values of galaxy properties – i.e. to reproduce the tails
f the distributions. The SMOGN data augmentation technique is a
trategy to handle imbalanced data sets, whereby additional objects
re artificially introduced in the training sample in order to force the
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achine to give more importance to less represented objects (Kunz 
019 ). 
The specifications of NN class are described as follows. We use 

he categorical cross-entropy loss function and the ADAM optimizer 
Kingma & Ba 2014 ) to train the networks. The architecture may
hange depending on the galaxy properties to be predicted. In general, 
ur developed networks have a single intermediate layer, with a 
umber of neurons that typically depends on whether the output is a
ni v ariate or a joint distribution. We use the L2 regularization, which
pplies a penalty proportional to the square of the model’s weights. 
he number of epochs (iterations) is constrained with an early- 
topping criterion based on the validation set loss. In the intermediate 
ayers, we used the rectified linear unit as acti v ation function, while
n the output layer we use the Softmax function, which is similar to
he Sigmoid function, but it normalizes the output in such a way that
he scores of the K classes add up to one. In this way, the NN class 

utput works as a proxy for a probability in bins of galaxy properties.

 RESULTS  

ig. 1 shows the distributions of the galaxies in the test set.
he first column is the truth table, the TNG300 catalogue. The 
econd column is the NN class prediction of uni v ariate distributions,
.e. galaxy properties predicted independently. With the uni v ariate 
istributions, we can compute the joint distributions as P ( Y 1 ) ⊗P ( Y 2 ),
hich are shown in the heatmap diagrams. The third column is the
N class prediction for the joint distributions P ( Y 1 , Y 2 ), which can be

nte grated to reco v er the uni v ariate distributions P ( Y ) sho wn in the
arginal plots from the third column, i.e. 

 ( Y i ) = 

∫ 

P ( Y i , Y j )d Y j . (1) 

The uni v ariate distributions predicted by NN class , sho wn in black
olid lines in the second-column plots of Fig. 1 , are in excellent
greement with the true distributions from TNG300, shown in grey 
haded re gions. The y also reproduce fairly well the joint distribu-
ions P ( Y 1 ) ⊗P ( Y 2 ) for most cases. The P ( g − i ) ⊗P (sSFR) joint
istribution, ho we ver, fails to reproduce the shape of the distribution
or redder colours and lower sSFRs. According to this prediction, 
ed galaxies could have virtually any value of sSFR, while what 
e actually observe in TNG300 is that as galaxies mo v e from the
lue to the red peak, their sSFRs decrease. This important feature is
eco v ered when NN class is trained to predict P ( g − i, sSFR) jointly
third column in Fig. 1 ). 

The abo v e result indicates that our input halo properties alone
re unable to predict accurately the correlations between colour and 
SFR. The model would need additional features in order to capture 
his relation. It is interesting, ho we ver, that we can o v ercome this
imitation by predicting the joint distribution directly using only 
he presented halo properties. This e x ercise indicates that, in order to
obustly assign galaxies to haloes, with all the properties consistently 
orrelated, the properties should be predicted together. Note that, in 
rinciple, one could define galaxy populations based on as many 
arameters as wished. Therefore, in the most general case, we would 
ave an N -dimensional distribution associated with each host halo. 
As a complementary analysis, Fig. 2 shows two additional well- 

nown relations in the context of the halo–galaxy connection: the 
tellar-to-halo mass relation, and the galaxy size–halo mass relation 
btained with TNG300 and with P ( M ∗) and P ( R 

( ∗) 
1 / 2 ) predicted by

N class . 
Figs 1 and 2 allow for a visual inspection of the results. In order to

uantify the similarity between the distrib utions, we ha ve performed 
he Kolmogoro v–Smirno v (KS) test (for more details, see Ivezi ́c et al.
014 ): 

S test values: � = max ( | F 1 − F 2 | ) , (2) 

here F 1 and F 2 are cumulative distributions. The results are shown
n Table 1 . For comparison, we also show the values obtained with
ur baseline models, Raw and SMOGN, from Santi et al. ( 2022 ).
nce again, we see that for most cases the independent prediction of
ni v ariate distributions reproduces fairly well the joint distributions, 
xcept for colour and sSFR. In all cases, NN class provides significantly
o wer v alues as compared to Raw and SMOGN. 

So far, we have focused on the combined distributions for the
ntire test sample. We now turn our attention to individual objects
nd the probability distributions that our ML machinery predicts for 
hem. In particular, Fig. 3 displays, in a similar format to that of
ig. 1 , some examples of the joint probability distribution P ( M ∗, g

i ) for three illustrative cases: a red object, a blue object, and an
bject lying at the so-called green valle y re gion (from left to right).
n each panel, the host halo mass is specified on the top, whereas
he true TNG300 values of stellar mass and colour are shown as the
ashed lines. As a reference, we also include in the marginal plots
he distributions of the objects in the test set within a bin of ±0.1 in
alo mass around the values indicated on the top of the plots. 
The first thing to notice from Fig. 3 is that the distributions are

ignificantly narrower along the x -axis, as compared to the y -axis.
his is of course expected, since stellar mass is the galaxy property

hat displays a tighter relation with the halo properties (particularly 
ith halo mass), and therefore is the easiest to predict. It is also
oteworthy that not all distributions can be well approximated by 
 Gaussian distribution. Some distributions are significantly skewed 
r, depending on halo mass, even bimodal, reflecting the well-known 
olour/sSFR bimodality of the galaxy population (e.g. Baldry et al. 
004 ). 
The red galaxy on the left-hand panel shows very little scatter in

olour. This is typically the case for red galaxies hosted by haloes with
og 10 ( M vir [ h 

−1 M �]) � 12 . 5. By visually inspecting Figs 1 and 2 , we
an get a sense as to why this happens: massive haloes are typically
opulated by massive galaxies, since the scatter in the stellar-to- 
alo mass relation is small. Massive galaxies are almost e xclusiv ely
 ery red, which e xplains why the machine predicts a very narrow
istribution of colours from the set of halo properties employed. The
ituation is very different for the blue galaxy featured in the middle
anel. In this case, the predicted colour distribution is much broader
han that for the red galaxy. Here, the host halo mass is much smaller,
hich implies a larger scatter in the stellar-to-halo mass relation. On

op of that, blue galaxies intrinsically display a wide range of colours.
ll this uncertainty is captured by the machine in terms of a wider

olour distribution. 
Finally, the green-valley galaxy on the right-hand panel of Fig. 3

epresents the most extreme case of the three, where the colour
e generac y produces a bimodal distribution. These objects are caught 
etween two intrinsically different populations, i.e. the blue cloud 
nd the red sequence. The analysis of individual distributions reveals 
hat these objects are the ones that display a weaker relation with
he properties of their host haloes (at least the ones analysed in this
ork). As discussed in Santi et al. ( 2022 ), these objects e x emplify

he most clear case where halo properties alone seem insufficient 
o predict the colour/sSFR, thus emphasizing the advantages of our 
robability-based methodology. 
This probability distribution description on an individual object 

asis allows us to explore the dependence of galaxy properties on
econdary halo properties at fixed halo mass (a dependence that 
MNRAS 522, 3236–3247 (2023) 
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Figure 1. Distributions of galaxy properties. From top to bottom: colour versus stellar mass, sSFR versus stellar mass, sSFR versus colour, and radius versus 
stellar mass. The first column shows the true distributions from TNG300. The second column shows the distributions computed from the uni v ariate distributions 
as predicted by NN class – i.e. predicted independently from each other. The third column shows the joint distributions as predicted by NN class . The grey 
shaded regions in the marginal plots correspond to the TNG300 distributions, while the black solid lines correspond to the NN class predictions. The uni v ariate 
distributions shown in the third column plots were computed by marginalizing the joint distributions. 
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Figure 2. Stellar-to-halo mass relation (top) and galaxy size–halo mass 
relation (bottom) from the TNG300 catalogue (left) and from NN class 

predictions (right). 

i
e  

D  

o  

o  

p  

m  

t  

s
t  

a
a
d
m
f  

s
v
i  

o
c

5

W  

fl
t  

t  

t  

t  

T
f  

a  

(  

t  

t
 

o  

t
1

w

 

i  

d  

O  

t  

c
F  

t
 

b  

g  

m  

≤  

4
=  

i

g
s  

c  

P  

l  

c  

m  

c
 

d  

4
s
T
t  

s  

t  

i  

5  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/522/3/3236/7140532 by FM
R

P/BIBLIO
TEC

A C
EN

TR
AL/U

SP user on 26 Ju
s closely related to the so-called galaxy assembly bias effect; see 
.g. Wechsler & Tinker 2018 ; Sato-Polito et al. 2019 ; Montero-
orta et al. 2021b ). In particular, we have analysed the dependence
f P ( M ∗, g − i ) on halo age at fixed halo mass for green-valley
bjects. To this end, we selected objects in the test sample with
redicted colour within the range 0.80 < g − i ≤ 1.05 and halo
asses of 11 . 8 < log 10 ( M vir [ h 

−1 M �]) < 12 . 2 (we have checked
hat choosing a narrower halo mass range would not alter our results
ignificantly). This subset was subsequently split by halo age (taking 
he 15 and 85 per cent quantiles). For younger haloes, a stack of
ll distributions still reveals some bimodality in colour, albeit with 
 stronger preference for the blue peak. The predicted probability 
istribution for green-valley galaxies in older haloes is, conversely, 
uch more skewed towards redder colours. The tail of the distribution 

or these objects still co v ers the green valley, which means that in
ome realizations these host haloes will be populated by a green- 
alley central galaxy (although the probability for this to happen 
s low). These results are reassuring in terms of the robustness of
ur methodology, demonstrating that our probability description is 
apable of capturing secondary halo dependences. 

 POWER  SPECTRUM  

ith the help of the method presented in this work, we have greater
exibility to define different tracers based on galaxy properties. In 

his section, we explore the performance of NN class in terms of
he accuracy with which we can reproduce the power spectra of
hose tracers. We compute spectra for tracers in the test set, using
he PYTHON package NBODYKIT (Hand et al. 2018 ). For the truth
NG300 catalogue, we use the positions of the central galaxies, but 

or the predictions we use the positions of the host haloes. Once
Table 1. KS test values for univariate (1D) and joint (2D) distributions com

1D KS P ( Y ) Raw SMOGN 2D KS 

P ( M ∗) 0.002 0.064 0.064 P ( M ∗, g − i ) 
P ( g − i ) 0.004 0.181 0.116 P ( M ∗, sSFR) 
P (sSFR) 0.004 0.213 0.168 P ( g − i , sSFR) 
P ( R 

( ∗) 
1 / 2 ) 0.009 0.217 0.110 P ( M ∗, R 

( ∗) 
1 / 2 ) 

– – – P ( M vir , M ∗) 
– – – P ( M vir , R 

( ∗) 
1 / 2 ) 
gain, we compare NN class with the baseline models from Santi et al.
 2022 ). As a complementary analysis, in Appendix B we compare
he power spectra of tracers defined according to the same criteria of
hat previous work, which are based on individual galaxy properties. 

Since TNG300 is a single box, the uncertainties of the spectrum
n each bandpower k i , for each tracer α, are computed according to
he theoretical (Gaussian) covariance (Feldman, Kaiser & Peacock 
994 ), i.e. 

σ 2 
α,i 

P 

2 
α,i 

= 

2 

V 

˜ V 

(
1 + n̄ αP α,i 

n̄ αP α,i 

)2 

, (3) 

ith ˜ V = 4 πk 2 i �k/ (2 π ) 3 , and the residuals are defined as 
(
P 

pred 
α,i − P 

TNG300 
α,i 

)2 

σ 2 
α,i 

. (4) 

Our choice of tracers is driven by the fact that the target selection
n galaxy surv e ys often relies on the analysis of colour–magnitude
iagrams (see e.g. Eisenstein et al. 2001 , 2011 ; Zhou et al. 2020 ).
ne of the most common ways to define galaxy populations is in

erms of the red sequence and the blue cloud, which can also be
learly distinguished in the colour–stellar mass diagram, as shown in 
ig. 1 . They are two distinct populations with different biases, hence

heir interest for studies of large-scale structure. 
In a similar fashion, we defined seven tracers ( α = 1, . . . , 7)

ased on the colour–stellar mass diagram, P ( M ∗, g − i ). We split red
alaxies ( g − i > 1.05) into lower ( α = 1) and higher ( α = 2) stellar
asses. Conv ersely, ‘green-valle y’ galaxies (defined as 0.80 < g − i
1.05) are split into three mass bins, leading to populations α = 3,

, 5. Finally, blue galaxies ( g − i ≤ 0.8) are separated into lower ( α
 6) and higher ( α = 7) stellar mass bins. This selection is outlined

n Table 2 , and it is represented in the lower right corner of Fig. 4 . 
An interesting feature of the probabilistic approach is that each 

alaxy is generated through a realization of a probability distribution 
preading o v er man y bins. As a consequence, we can build man y
atalogues of central galaxy properties by drawing values y 1 , y 2 from
 ( Y 1 , Y 2 ). We have performed r = 42 realizations of P ( M ∗, g − i ),

eading to as many values of M ∗ and g − i for each halo. We then
ompute the spectrum of each of these samples, and from that the
ean and variance of the spectra. For the mean spectrum P̄ α,i , we

ompute the uncertainties according to equation ( 3 ). 
Fig. 4 shows the power spectra and residuals of the seven tracers

efined in terms of P ( M ∗, g − i ) (see Table 2 ). Tracers α = 3,
 are relatively rare; hence, their corresponding regions in colour–
tellar mass space are poorly populated by single-point estimators. 
herefore, a model that predicts galaxies in these regimes improves 

he quality of the fit considerably – i.e. it reduces χ2 . We had already
een an impro v ement with the SMOGN models, which better reco v er
his region as compared to the Raw models, but with NN class this
mpro v ement is even more pronounced. There are only a few α =
 galaxies in TNG300, which makes this population very sparse. In
MNRAS 522, 3236–3247 (2023) 

puted with the NNs and the baseline models. 

P ( Y 1 ) ⊗P ( Y 2 ) P ( Y 1 , Y 2 ) Raw SMOGN 

0.010 0.005 0.183 0.163 
0.012 0.009 0.253 0.209 
0.110 0.009 0.266 0.176 
0.015 0.007 0.217 0.150 
0.008 – 0.064 0.064 
0.012 – 0.217 0.110 

ly 2023

art/stad1186_f2.eps
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M

Figure 3. P ( M ∗, g − i ) for individual objects predicted by NN class . The dashed green lines show the true values for stellar mass and colour from TNG300. The 
shaded regions in the marginal plots are the distributions of objects with similar halo mass as indicated on the top of the corresponding panel. 

Table 2. Criteria for splitting central galaxies by stellar mass and colour, in 
order to define the tracers used in the power spectrum analysis. 

Tracer log ( M ∗[ h −1 M �]) g − i # Objects 

α = 1 (9.5, 10.5] > 1.05 4073 
α = 2 > 10.5 > 1.05 5207 
α = 3 ≤ 9.5 (0.80, 1.05] 4786 
α = 4 (9.5, 10.5] (0.80, 1.05] 5950 
α = 5 > 10.5 (0.80, 1.05] 1267 
α = 6 ≤ 9.5 ≤ 0.80 29 695 
α = 7 (9.5, 10.5] ≤ 0.80 18 432 
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articular, it has the largest variance o v er realizations. Conv ersely, all
odels are equally good at reproducing the power spectra of tracer

opulations closer to the peaks of the probability distributions: for α
 1, 2, 6, and 7, χ2 is comparable between all models. 
As discussed earlier, we are able to draw multiple samples from the

robabilities predicted by NN class . Each realization leads to slightly
if ferent po wer spectra, as can be seen in Fig. 4 . By computing the
ariance of the multiple P ( k ), we can assess the uncertainties due
o the intrinsic stochasticity in the halo–galaxy connection. Fig. 5
ompares the relative errors σ 2 /P 

2 
TNG300 ( k) computed using σ 2 

CV ,
rom equation ( 3 ) (which encodes the uncertainty due to CV), with
2 
NN class 

, which encodes the statistical uncertainties in the halo–galaxy
onnection estimated with NN class . As we already saw in Fig. 4 , the
V error bars are typically larger than the scatter in the power spectra
ue to the multiple realizations of the NN class probabilities. The
ontribution of σ 2 

NN class 
seems more rele v ant for the tracer population

, which is very sparse. Ho we ver, for all tracers σ 2 
CV decreases

or smaller scales (due to the Fourier bin volume), while σNN class 

emains approximately constant. Therefore, the relative contribution
f σNN class for the total error budget of the power spectra appears to
ecome more important at smaller scales. 
Even though we see no evidence of a bias associated with this

dditional source of statistical uncertainties, the stochastic nature of
he relationship between galaxies and their haloes may present further
hallenges for multitracer analyses of LSS (McDonald & Seljak
009 ; Seljak 2009 ). The advantages of the multitracer technique are
eliant upon the partial cancellation of CV that results from clustering
easurements from different galaxy types that are assumed to

eflect the same underlying DM density field (in that respect, see
lso Abramo & Leonard 2013 ; Abramo, Secco & Loureiro 2016 ).
he ‘stochastic bias’ associated with the nature of the galaxy–
NRAS 522, 3236–3247 (2023) 
alo connection can dilute some of the expected CV cancellation.
o we ver, that stochastic component seems to affect mostly the
ower spectra on small scales, where non-linear effects already limit
ur ability to employ the multitracer technique ef fecti vely (see e.g.
ontero-Dorta et al. 2020a ). 

 DI SCUSSI ON  A N D  C O N C L U S I O N S  

lthough there is an obvious relation between the baryonic and
M components of haloes, there is also mounting evidence that the
roperties of haloes alone are insufficient to reproduce the properties
f galaxies, since the latter are shaped by a variety of galaxy
ormation processes. On the other hand, ML regression models
re traditionally designed to reproduce single-value statistics, and
hus are ill-equipped to encode the intrinsic scatter in the halo–
alaxy connection. Building on the recent work of Santi et al.
 2022 ), here we use the TNG300 hydrodynamical simulation in
ombination with NNs to map the connection between the properties
f central galaxies and the properties of their hosting haloes. As in
he aforementioned work, NNs are trained to reproduce the stellar

ass, g − i colour, sSFR, and radius of TNG300 galaxies based
n a set of halo/environmental properties that include virial mass,
oncentration, formation redshift, spin, and o v erdensity (computed
 v er scales of 3 h −1 Mpc). In order to alleviate the deficiencies of ML
eterministic regression models, we have tested a different approach
or the first time in the context of the halo–galaxy connection. The
Ns are now trained to predict probability distributions instead of

ingle-value statistics by means of a binning classification scheme. In
ssence, the distributions of galaxy properties are split into K narrow
ins so that the NNs can associate a score to each of the K classes.
his is performed in such a way that the output can be used as a proxy

or the probability distributions of the central galaxy properties. 
We have shown that this approach is in fact capable of produc-

ng bi v ariate distributions of galaxy properties, i.e. P ( Y 1 , Y 2 ), in
utstanding agreement with those from TNG300 (here, { Y 1 , Y 2 }
s any pair of galaxy properties). These joint distributions can be
ompared with the product of the two 1D (disjoint) distributions,
 ( Y 1 ) and P ( Y 2 ). For the joint distributions, we employ 2D K × K
rids, representing the binned galaxy properties, where each pixel
n the grid corresponds to a class. In either case, predicting the
robability distributions yields significantly better results compared
ith the deterministic approach (Santi et al. 2022 ), as both a visual

nspection and the 2D KS test reveal. As a reference, our 2D KS

art/stad1186_f3.eps
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Figure 4. Power spectra and residuals for seven tracers selected on the basis of the colour–stellar mass diagram (bottom right panel). The green solid lines 
correspond to TNG300, while the light purple solid lines correspond to spectra from r = 42 samples drawn from the probabilities predicted by NN class . The 
dark purple, thick dashed lines correspond to the mean of those realizations. The baseline models are shown in orange: darker dotted lines correspond to the 
Raw model and lighter dotted–dashed lines correspond to the SMOGN model. 

Figure 5. Relative error for seven tracers selected based on the colour–stellar mass diagram. The variances are normalized by the TNG300 spectrum P T ( k ) of 
each tracer α. Orange dotted lines correspond to the relative error computed with equation ( 3 ), purple dashed lines correspond to the relative error computed 
with NN class , and green solid lines correspond to the total relative error. 

t  

t  

i  

p
d
g

f
d

d  

y  

v
t
t  

d
T  

i
r

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/522/3/3236/7140532 by FM
R

P/BIBLIO
TEC

A C
EN

TR
AL/U

SP user on 26 July 2023
est for the joint distributions P ( Y 1 , Y 2 ) yields performance results
hat are better by factors of 10–30 as compared to those reported
n Santi et al. ( 2022 ). We have also checked that predicting galaxy
airs directly is particularly advantageous for the colour–sSFR joint 
istribution, where the stellar mass, the main anchor of the halo–
alaxy connection, is not included. 

An important subproduct of our analysis is the joint distributions 
or individual galaxies, which can be understood as the probability 
istributions that an object occupies a given location on the 2D 
iagrams for the galaxy properties. As an illustration, we have anal-
sed the individual joint distributions of stellar mass and colour, and
erified that the distributions for red galaxies, particularly for those 
hat live in massive haloes, are significantly more concentrated than 
hose for blue and green-valley objects. For the latter, the individual
istributions can even become bimodal in certain halo mass ranges. 
his is a robustness test for our methodology, showing that these

ndividual distributions are good estimators of the uncertainty that 
esults from attempting to predict galaxy properties from incomplete 
MNRAS 522, 3236–3247 (2023) 
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halo) information. The main advantages of our method are that it
rovides a more complete description of the interconnected relations
etween galaxy and halo properties, as compared to single-value ML
pproaches, and that it can be easily implemented in cosmological
nd galaxy formation models. 

As an application of our methodology, we have shown that our
redictions are capable of reproducing with unprecedented precision
he power spectra of any given number of tracers defined based on the
olour–stellar mass diagram (we showed results for seven tracers, but
he analysis can be extended to more galaxy populations). We have
lso checked that the statistical uncertainty in our models (which
an be obtained by sampling the distributions several times, creating
ultiple catalogues) is often small compared with the uncertainty that

manates from CV (particularly on large scales). In this sense, our
ethod is clearly advantageous for cosmological studies employing
 high number of tracers and/or underrepresented populations, as
ompared with the more traditional single-value approaches (see
anti et al. 2022 , for comparison). These advantages can be exploited

n the context of multitracer cosmological analyses, where clustering
nformation from multiple galaxy population and redshift ranges is
ombined in order to reduce the uncertainties in the estimation of the
ower spectrum and thus the bias and cosmological parameters (e.g.
bramo & Leonard 2013 ; Abramo et al. 2016 ; Montero-Dorta et al.
020a ; Abramo, Ferri & Tashiro 2022 ). 
One interesting application of our method is to paint galaxies

n to haloes in DM-only simulations. As we have discussed in
his work, when central galaxy properties are predicted jointly,
heir correlations are in agreement with those from hydrodynamical
imulations. Ho we ver, in order to extend our analysis to a higher
umber of dimensions, i.e. to predict joint distributions of three or
ore properties, or to extend the approach to satellite galaxies, it is

ecessary to optimize the discretization of the galaxy distributions.
resently, our method can become computationally inefficient for

his purpose, as so far we are considering bins of equal size across
he galaxy property diagrams. Moreo v er, by cate gorizing the galaxy
roperties and treating the bins as individual classes, one may
ose the information that nearby bins are more similar than distant
nes. Therefore, using additional metrics and trying alternative loss
unctions to quantify the difference between the distributions may
e helpful, especially when handling higher dimensions (see e.g.
tiskalek et al. 2022 ). Follow-up work will be devoted to improving

his methodology in order to generalize the analysis. 
Finally, the flexibility of our method in terms of reproducing

oth the clustering and internal properties of virtually any galaxy
opulation with precision may have applications in the context of
alaxy assembly bias, i.e. the secondary dependences of galaxy
lustering at fixed halo mass (see e.g. Lin et al. 2016 ; Montero-
orta et al. 2017 ; Zu et al. 2017 ; Niemiec et al. 2018 ; Zentner et al.
019 ; Obuljen, Perci v al & Dalal 2020 ; Salcedo et al. 2022 ; Wang
t al. 2022 ). In particular, recent attempts to probe the effect with
bservations (Salcedo et al. 2022 ; Wang et al. 2022 ) have employed
orward-modelling techniques using specifically generated galaxy
ocks. Our methodology and statistical descriptions seem ideal to

e incorporated into these models. 
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PPENDI X  A :  SI NGLE  VA LU E  ESTI MATIO N  

n this appendix, we discuss the results of the NN class in terms of
ingle-point estimation scores. Throughout the paper, our analysis 
ocuses on the performance in terms of how well we can reco v er the
istributions. Since we do not have a single value associated with
ach data set instance, but a distribution, one can sample several
imes from this distribution in order to estimate the most probable
alue, and compute single-point estimation metrics with it. Once 
gain, we take the average of r = 42 realizations of each predicted
alaxy property and calculate the Pearson correlation coefficient 
PCC) between the true and estimated values as 

CC = 

cov(y pred , y true ) 

σy pred σy true 
. (A1) 

ig. A1 shows the PCC score as a function of the number of
ealizations and also the values of the baseline models for the
our galaxy properties. In this e x ercise, we sample from uni v ariate
istributions P ( Y ) instead of joint distributions. NN class provides
esults comparable to the single-point estimators Raw and SMOGN 

s the number of realizations increases, which indicates that NN class 

re also good maximum likelihood estimators. 
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Figure A1. PCC of NN class (solid lines) as a function of the number of 
realizations of P ( Y ), Y = M ∗, g − i , sSFR, and R 

( ∗) 
1 / 2 . The PCC values of the 

baseline models Raw and SMOGN are shown as dotted and squared markers, 
respectively. 
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PPENDI X  B:  POWER  SPECTRUM:  
D D I T I O NA L  RESULTS  

n this appendix, we show the power spectrum of the tracers defined
n Santi et al. ( 2022 ) (see Fig. B1 ). The galaxies are divided into
wo populations based on each of the properties. The uni v ariate
istributions can be obtained from different joint distributions, by
arginalizing them (see equation 1 ). Stellar mass can be obtained

rom P ( M ∗, g − i) , P ( M ∗, sSFR), and P ( M ∗, R 

( ∗) 
1 / 2 ), colour can be

btained from P ( M ∗, g − i ) and P ( g − i, sSFR), sSFR can be
btained from P ( g − i, sSFR) and P ( M ∗, sSFR), and the radius can
e obtained from P ( M ∗, R 

( ∗) 
1 / 2 ). Once again, for NN class we show r =

2 realizations as well as the mean of the spectra of all r samples.
e see that for these tracers there is no clear advantage of the NN class 

 v er the Raw model: in most cases, NN class performs similar to the
aw models, although for sSFR the results for NN class are slightly
orse (which is not entirely unexpected, since sSFR is a particularly
ifficult property to predict based only on the halo properties that we
ake into account). Note that here we are computing the average of
he spectra of many realizations of the predicted distributions, as in
ig. 4 . In this way, we can explore the advantage of having a tool

hat reco v ers the complete range of possible values. In order to hav e
 more straightforward comparison with the single-point estimators,
ne can compute the spectrum of the tracers defined based on the
aximum likelihood values of galaxy properties, as in Appendix A .
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Figure B1. Power spectrum and residuals of two tracers defined by splitting each galaxy property. The higher bias tracers are shown in red, and the lower bias 
tracers are shown in blue. The properties are obtained by marginalizing the joint distributions and can thus be obtained with more than one distribution. The first 
column shows the results for stellar mass and colour obtained with P ( M ∗, g − i ). The second column shows the results for stellar mass and sSFR obtained with 
P ( M ∗, sSFR). The third column shows the results for colour and sSFR obtained with P ( g − i, sSFR). The fourth column shows the results for stellar mass and 
radius obtained with P ( M ∗, R 

( ∗) 
1 / 2 ). The power spectrum of each NN class realization is shown as solid lines. The mean NN class spectra are shown as dashed lines 

and the Raw model spectra are shown as dotted lines. 
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