Differential equations of classical geometry, a qualitative theory (2009)
- Authors:
- Autor USP: TELLO, JORGE MANUEL SOTOMAYOR - IME
- Unidade: IME
- Assunto: GEOMETRIA DIFERENCIAL CLÁSSICA
- Language: Inglês
- Imprenta:
- Publisher: IMPA
- Publisher place: Rio de Janeiro
- Date published: 2009
- Descrição física: 256 p
- ISBN: 9788524402951
- Conference titles: Coloquio Brasileiro de Matematica
-
ABNT
GARCIA, Ronaldo e SOTOMAYOR, Jorge. Differential equations of classical geometry, a qualitative theory. . Rio de Janeiro: IMPA. . Acesso em: 13 fev. 2026. , 2009 -
APA
Garcia, R., & Sotomayor, J. (2009). Differential equations of classical geometry, a qualitative theory. Rio de Janeiro: IMPA. -
NLM
Garcia R, Sotomayor J. Differential equations of classical geometry, a qualitative theory. 2009 ;[citado 2026 fev. 13 ] -
Vancouver
Garcia R, Sotomayor J. Differential equations of classical geometry, a qualitative theory. 2009 ;[citado 2026 fev. 13 ] - Introduction: a few words about Mauricio M. Peixoto on his 80th birthday
- O elipsóide de Monge
- Bifurcations of umbilic points and related principal cycles
- Curvatures of conflict surfaces in Euclidean 3-space
- Impasse singularities of differential systems of the form A(x)x'=F(x)
- Historical comments on Monge’s ellipsoid and the configurations of lines of curvature on surfaces
- Stability and Hopf bifurcation in an hexagonal governor system
- Structural stability of constrained polynomial systems
- A note on some developments on Carathéodory conjecture on umbilic points
- Lines of principal curvature around umbilics and Whitney umbrellas
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
