SDBM: Supervised Decision Boundary Maps for machine learning classifiers (2022)
- Authors:
- USP affiliated authors: HIRATA JUNIOR, ROBERTO - IME ; OLIVEIRA, ARTUR ANDRÉ ALMEIDA DE MACEDO - IME ; ESPADOTO, MATEUS - IME
- Unidade: IME
- DOI: 10.5220/0010896200003124
- Assunto: APRENDIZADO COMPUTACIONAL
- Keywords: Dimensionality Reduction; Dense Maps
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: SciTePress
- Publisher place: Lisboa
- Date published: 2022
- Source:
- Título: Proceedings
- Conference titles: International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - IVAPP
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: hybrid
- Licença: cc-by-nc-nd
-
ABNT
OLIVEIRA, Artur André Almeida de Macedo et al. SDBM: Supervised Decision Boundary Maps for machine learning classifiers. 2022, Anais.. Lisboa: SciTePress, 2022. Disponível em: https://doi.org/10.5220/0010896200003124. Acesso em: 27 dez. 2025. -
APA
Oliveira, A. A. A. de M., Espadoto, M., Hirata Júnior, R., & Telea, A. C. (2022). SDBM: Supervised Decision Boundary Maps for machine learning classifiers. In Proceedings. Lisboa: SciTePress. doi:10.5220/0010896200003124 -
NLM
Oliveira AAA de M, Espadoto M, Hirata Júnior R, Telea AC. SDBM: Supervised Decision Boundary Maps for machine learning classifiers [Internet]. Proceedings. 2022 ;[citado 2025 dez. 27 ] Available from: https://doi.org/10.5220/0010896200003124 -
Vancouver
Oliveira AAA de M, Espadoto M, Hirata Júnior R, Telea AC. SDBM: Supervised Decision Boundary Maps for machine learning classifiers [Internet]. Proceedings. 2022 ;[citado 2025 dez. 27 ] Available from: https://doi.org/10.5220/0010896200003124 - Improving self-supervised dimensionality reduction: exploring hyperparameters and pseudo-labeling strategies
- Improving image classification tasks using fused embeddings and multimodal models
- Stability analysis of supervised decision boundary maps
- Locating urban trees near electric wires using Google Street View Photos: a new dataset and a semi-supervised learning approach in the wild
- INACITY - INvestigate and Analyze a CITY
- Towards a method for evaluating bus stop infrastructure with street level images and large language models
- INvestigate and Analyse a City - INACITY
- Overcoming challenging crban images: deep learning and data integration methods for detecting trees entangled with power lines
- Constructing and visualizing high-quality classifier decision boundary maps
- Detecting tree and wire entanglements with deep learning
Informações sobre o DOI: 10.5220/0010896200003124 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3132751.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
