Data-rich modeling helps answer increasingly complex questions on variant and disease interactions [Carta]: comment on "Mathematical models for dengue fever epidemiology: A10-year systematic review" by Aguiar et al. (2023)
- Autor:
- Autor USP: ROSTER, KIRSTIN INGRID OLIVEIRA - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.plrev.2023.01.009
- Subjects: MODELOS MATEMÁTICOS; EPIDEMIOLOGIA; DENGUE
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Physics of Life Reviews
- ISSN: 1571-0645
- Volume/Número/Paginação/Ano: v. 44, p. 197-200, Mar. 2023
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: bronze
-
ABNT
ROSTER, Kirstin. Data-rich modeling helps answer increasingly complex questions on variant and disease interactions [Carta]: comment on "Mathematical models for dengue fever epidemiology: A10-year systematic review" by Aguiar et al. Physics of Life Reviews. Amsterdam: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.plrev.2023.01.009. Acesso em: 31 dez. 2025. , 2023 -
APA
Roster, K. (2023). Data-rich modeling helps answer increasingly complex questions on variant and disease interactions [Carta]: comment on "Mathematical models for dengue fever epidemiology: A10-year systematic review" by Aguiar et al. Physics of Life Reviews. Amsterdam: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo. doi:10.1016/j.plrev.2023.01.009 -
NLM
Roster K. Data-rich modeling helps answer increasingly complex questions on variant and disease interactions [Carta]: comment on "Mathematical models for dengue fever epidemiology: A10-year systematic review" by Aguiar et al. [Internet]. Physics of Life Reviews. 2023 ; 44 197-200.[citado 2025 dez. 31 ] Available from: https://doi.org/10.1016/j.plrev.2023.01.009 -
Vancouver
Roster K. Data-rich modeling helps answer increasingly complex questions on variant and disease interactions [Carta]: comment on "Mathematical models for dengue fever epidemiology: A10-year systematic review" by Aguiar et al. [Internet]. Physics of Life Reviews. 2023 ; 44 197-200.[citado 2025 dez. 31 ] Available from: https://doi.org/10.1016/j.plrev.2023.01.009 - Data science for epidemiology: a case study of dengue in Brazil
- Data-rich modeling helps answer increasingly complex questions on variant and disease interactions [Carta]: comment on "Mathematical models for dengue fever epidemiology: A10-year systematic review" by Aguiar et al.
- Machine-learning-based forecasting of dengue fever in Brazilian cities using epidemiologic and meteorological variables
- Impact of the COVID-19 pandemic on dengue in Brazil: interrupted time series analysis of changes in surveillance and transmission
- Forecasting new diseases in low-data settings using transfer learning
- EEG functional connectivity and deep learning for automatic diagnosis of brain disorders: Alzheimer's disease and schizophrenia
- Application of machine learning and complex network measures to an EEG dataset from ayahuasca experiments
- Diagnosis of autism spectrum disorder based on functional brain networks and machine learning
Informações sobre o DOI: 10.1016/j.plrev.2023.01.009 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3121384.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
