Forecasting new diseases in low-data settings using transfer learning (2022)
- Authors:
- USP affiliated authors: RODRIGUES, FRANCISCO APARECIDO - ICMC ; ROSTER, KIRSTIN INGRID OLIVEIRA - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.chaos.2022.112306
- Subjects: APRENDIZADO COMPUTACIONAL; COVID-19; ZIKA VÍRUS; TOMADA DE DECISÃO; SURTOS DE DOENÇAS
- Keywords: Transfer learning; Epidemic forecasting
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Chaos, Solitons and Fractals
- ISSN: 0960-0779
- Volume/Número/Paginação/Ano: v. 161, p. 1-8, 2022
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
ROSTER, Kirstin e CONNAUGHTON, Colm e RODRIGUES, Francisco Aparecido. Forecasting new diseases in low-data settings using transfer learning. Chaos, Solitons and Fractals, v. 161, p. 1-8, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.chaos.2022.112306. Acesso em: 22 jan. 2026. -
APA
Roster, K., Connaughton, C., & Rodrigues, F. A. (2022). Forecasting new diseases in low-data settings using transfer learning. Chaos, Solitons and Fractals, 161, 1-8. doi:10.1016/j.chaos.2022.112306 -
NLM
Roster K, Connaughton C, Rodrigues FA. Forecasting new diseases in low-data settings using transfer learning [Internet]. Chaos, Solitons and Fractals. 2022 ; 161 1-8.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1016/j.chaos.2022.112306 -
Vancouver
Roster K, Connaughton C, Rodrigues FA. Forecasting new diseases in low-data settings using transfer learning [Internet]. Chaos, Solitons and Fractals. 2022 ; 161 1-8.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1016/j.chaos.2022.112306 - Machine-learning-based forecasting of dengue fever in Brazilian cities using epidemiologic and meteorological variables
- Impact of the COVID-19 pandemic on dengue in Brazil: interrupted time series analysis of changes in surveillance and transmission
- Data-rich modeling helps answer increasingly complex questions on variant and disease interactions [Carta]: comment on "Mathematical models for dengue fever epidemiology: A10-year systematic review" by Aguiar et al.
- Data science for epidemiology: a case study of dengue in Brazil
- EEG functional connectivity and deep learning for automatic diagnosis of brain disorders: Alzheimer's disease and schizophrenia
- Diagnosis of autism spectrum disorder based on functional brain networks and machine learning
- Application of machine learning and complex network measures to an EEG dataset from ayahuasca experiments
- Low-dimensional behavior of Kuramoto model with inertia in complex networks
- Collective dynamics in two populations of noisy oscillators with asymmetric interactions
- The Kuramoto model in complex networks
Informações sobre o DOI: 10.1016/j.chaos.2022.112306 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3086988.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
