Inexact restoration for derivative-free expensive function minimization and applications (2022)
- Authors:
- Autor USP: BIRGIN, ERNESTO JULIAN GOLDBERG - IME
- Unidade: IME
- DOI: 10.1016/j.cam.2022.114193
- Subjects: ANÁLISE NUMÉRICA; PROGRAMAÇÃO NÃO LINEAR; PESQUISA OPERACIONAL
- Keywords: Nonlinear programming; Inexact restoration; Derivative-free; Inexact evaluation of expensive function; Algorithms
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Computational and Applied Mathematics
- ISSN: 0377-0427
- Volume/Número/Paginação/Ano: v. 410, artigo n. 114193, p. 1-15, 2022
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BIRGIN, Ernesto Julian Goldberg e KREJIĆ, Nataša e MARTÍNEZ, José Mário. Inexact restoration for derivative-free expensive function minimization and applications. Journal of Computational and Applied Mathematics, v. 410, n. artigo 114193, p. 1-15, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.cam.2022.114193. Acesso em: 18 fev. 2026. -
APA
Birgin, E. J. G., Krejić, N., & Martínez, J. M. (2022). Inexact restoration for derivative-free expensive function minimization and applications. Journal of Computational and Applied Mathematics, 410( artigo 114193), 1-15. doi:10.1016/j.cam.2022.114193 -
NLM
Birgin EJG, Krejić N, Martínez JM. Inexact restoration for derivative-free expensive function minimization and applications [Internet]. Journal of Computational and Applied Mathematics. 2022 ; 410( artigo 114193): 1-15.[citado 2026 fev. 18 ] Available from: https://doi.org/10.1016/j.cam.2022.114193 -
Vancouver
Birgin EJG, Krejić N, Martínez JM. Inexact restoration for derivative-free expensive function minimization and applications [Internet]. Journal of Computational and Applied Mathematics. 2022 ; 410( artigo 114193): 1-15.[citado 2026 fev. 18 ] Available from: https://doi.org/10.1016/j.cam.2022.114193 - An augmented Lagrangian method with finite termination
- Packing circles within ellipses
- Spectral projected gradient and variable metric methods for optimization with linear inequalities
- Sparse Projected-Gradient Method As a Linear-Scaling Low-Memory Alternative to Diagonalization in Self-Consistent Field Electronic Structure Calculations
- The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems
- On acceleration schemes and the choice of subproblem’s constraints in augmented Lagrangian methods
- Penalizing simple constraints on augmented Lagrangian methods
- Dykstra’s algorithm and robust stopping criteria
- Outer trust-region method for constrained optimization
- On the application of an augmented Lagrangian algorithm to some portfolio problems
Informações sobre o DOI: 10.1016/j.cam.2022.114193 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3119455 - Inexact restora... | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
