Machine learning and image processing to monitor strain and tensile forces with mechanochromic sensors (2023)
- Authors:
- USP affiliated authors: OLIVEIRA JUNIOR, OSVALDO NOVAIS DE - IFSC ; BRUNO, ODEMIR MARTINEZ - IFSC ; CASTRO, LUCAS DANIEL CHIBA DE - IFSC ; RIBAS, LUCAS CORREIA - IFSC ; SCABINI, LEONARDO FELIPE DOS SANTOS - IFSC
- Unidade: IFSC
- DOI: 10.1016/j.eswa.2022.118792
- Subjects: APRENDIZADO COMPUTACIONAL; PROCESSAMENTO DE IMAGENS
- Keywords: Sensors; Mechanochromic; Computer vision; Machine learning; Image processing
- Language: Inglês
- Imprenta:
- Source:
- Título: Expert Systems with Applications
- ISSN: 0957-4174
- Volume/Número/Paginação/Ano: v. 212, p.118792-1-118792-7, Feb. 2023
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
CASTRO, Lucas Daniel Chiba de et al. Machine learning and image processing to monitor strain and tensile forces with mechanochromic sensors. Expert Systems with Applications, v. 212, p. 118792-1-118792-7, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.eswa.2022.118792. Acesso em: 03 jan. 2026. -
APA
Castro, L. D. C. de, Scabini, L. F. dos S., Ribas, L. C., Bruno, O. M., & Oliveira Junior, O. N. de. (2023). Machine learning and image processing to monitor strain and tensile forces with mechanochromic sensors. Expert Systems with Applications, 212, 118792-1-118792-7. doi:10.1016/j.eswa.2022.118792 -
NLM
Castro LDC de, Scabini LF dos S, Ribas LC, Bruno OM, Oliveira Junior ON de. Machine learning and image processing to monitor strain and tensile forces with mechanochromic sensors [Internet]. Expert Systems with Applications. 2023 ; 212 118792-1-118792-7.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/j.eswa.2022.118792 -
Vancouver
Castro LDC de, Scabini LF dos S, Ribas LC, Bruno OM, Oliveira Junior ON de. Machine learning and image processing to monitor strain and tensile forces with mechanochromic sensors [Internet]. Expert Systems with Applications. 2023 ; 212 118792-1-118792-7.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/j.eswa.2022.118792 - Spatio-spectral networks for color-texture analysis
- A complex network approach for fish species recognition based on otolith shape
- Fusion of complex networks and randomized neural networks for texture analysis
- Deep topological embedding with convolutional neural networks for complex network classification
- Complex texture features learned by applying randomized neural network on graphs
- Cellular automata rule characterization and classification using texture descriptors
- Evaluating deep convolutional neural networks as texture feature extractors
- Aprendizado de representações e caracterização de redes complexas com aplicações em visão computacional
- A complex network based approach for knee osteoarthritis detection: data from the Osteoarthritis initiative
- “Prêmio CAPES – Teses 2022”: Pós-doc do IFSC/USP arrecada Menção Honrosa e prêmio da Sociedade Brasileira de Computação (SBC)
Informações sobre o DOI: 10.1016/j.eswa.2022.118792 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| manuscript_post-print_Luc... | Direct link | ||
| PROD033434_3097835.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
