A complex network approach for fish species recognition based on otolith shape (2022)
- Authors:
- USP affiliated authors: BRUNO, ODEMIR MARTINEZ - IFSC ; RIBAS, LUCAS CORREIA - IFSC ; SCABINI, LEONARDO FELIPE DOS SANTOS - IFSC
- Unidade: IFSC
- DOI: 10.1109/IPTA54936.2022.9784114
- Subjects: REDES COMPLEXAS; REDES NEURAIS; IMAGEM DIGITAL; RECONHECIMENTO DE IMAGEM; INTELIGÊNCIA ARTIFICIAL
- Keywords: Complex Networks; Computer Vision; Feature Extraction; Shape Analysis; Fish recognition; Otolith
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: Institute of Electrical and Electronic Engineers - IEEE
- Publisher place: Piscataway
- Date published: 2022
- Source:
- Título: Proceedings
- Conference titles: International Conference on Image Processing Theory, Tools and Applications - IPTA
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
RIBAS, Lucas Correia e SCABINI, Leonardo e BRUNO, Odemir Martinez. A complex network approach for fish species recognition based on otolith shape. 2022, Anais.. Piscataway: Institute of Electrical and Electronic Engineers - IEEE, 2022. Disponível em: https://doi.org/10.1109/IPTA54936.2022.9784114. Acesso em: 27 dez. 2025. -
APA
Ribas, L. C., Scabini, L., & Bruno, O. M. (2022). A complex network approach for fish species recognition based on otolith shape. In Proceedings. Piscataway: Institute of Electrical and Electronic Engineers - IEEE. doi:10.1109/IPTA54936.2022.9784114 -
NLM
Ribas LC, Scabini L, Bruno OM. A complex network approach for fish species recognition based on otolith shape [Internet]. Proceedings. 2022 ;[citado 2025 dez. 27 ] Available from: https://doi.org/10.1109/IPTA54936.2022.9784114 -
Vancouver
Ribas LC, Scabini L, Bruno OM. A complex network approach for fish species recognition based on otolith shape [Internet]. Proceedings. 2022 ;[citado 2025 dez. 27 ] Available from: https://doi.org/10.1109/IPTA54936.2022.9784114 - Spatio-spectral networks for color-texture analysis
- Fusion of complex networks and randomized neural networks for texture analysis
- Deep topological embedding with convolutional neural networks for complex network classification
- Complex texture features learned by applying randomized neural network on graphs
- Evaluating deep convolutional neural networks as texture feature extractors
- Cellular automata rule characterization and classification using texture descriptors
- “Prêmio CAPES – Teses 2022”: Pós-doc do IFSC/USP arrecada Menção Honrosa e prêmio da Sociedade Brasileira de Computação (SBC)
- Dynamic texture analysis with diffusion in networks
- Aprendizado de representações e caracterização de redes complexas com aplicações em visão computacional
- A complex network based approach for knee osteoarthritis detection: data from the Osteoarthritis initiative
Informações sobre o DOI: 10.1109/IPTA54936.2022.9784114 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3080312.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
