Well-posedness for some third-order evolution differential equations: a semigroup approach (2022)
- Authors:
- Autor USP: CARVALHO, ALEXANDRE NOLASCO DE - ICMC
- Unidade: ICMC
- DOI: 10.1007/s00028-022-00811-9
- Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS; APROXIMAÇÃO; SEMIGRUPOS DE OPERADORES LINEARES
- Keywords: Approximations; Fractional powers; Sectorial operator; Semigroups
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Evolution Equations
- ISSN: 1424-3199
- Volume/Número/Paginação/Ano: v. 22, n. 2, p. 1-18, June 2022
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
BEZERRA, Flank David Morais e CARVALHO, Alexandre Nolasco de e SANTOS, Lucas Araújo. Well-posedness for some third-order evolution differential equations: a semigroup approach. Journal of Evolution Equations, v. 22, n. 2, p. 1-18, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00028-022-00811-9. Acesso em: 04 ago. 2025. -
APA
Bezerra, F. D. M., Carvalho, A. N. de, & Santos, L. A. (2022). Well-posedness for some third-order evolution differential equations: a semigroup approach. Journal of Evolution Equations, 22( 2), 1-18. doi:10.1007/s00028-022-00811-9 -
NLM
Bezerra FDM, Carvalho AN de, Santos LA. Well-posedness for some third-order evolution differential equations: a semigroup approach [Internet]. Journal of Evolution Equations. 2022 ; 22( 2): 1-18.[citado 2025 ago. 04 ] Available from: https://doi.org/10.1007/s00028-022-00811-9 -
Vancouver
Bezerra FDM, Carvalho AN de, Santos LA. Well-posedness for some third-order evolution differential equations: a semigroup approach [Internet]. Journal of Evolution Equations. 2022 ; 22( 2): 1-18.[citado 2025 ago. 04 ] Available from: https://doi.org/10.1007/s00028-022-00811-9 - Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics
- Structure of attractors for skew product semiflows
- Continuity of attractors for a semilinear wave equation with variable coefficients
- Patterns in parabolic problems with nonlinear boundary conditions
- Non-autonomous perturbation of autonomous semilinear differential equations: continuity of local stable and unstable manifolds
- Continuity of the dynamics in a localized large diffusion problem with nonlinear boundary conditions
- Exponential global attractors for semigroups in metric spaces with applications to differential equations
- Continuity of dynamical structures for non-autonomous evolution equations under singular perturbations
- A gradient-like non-autonomous evolution process
- Equi-exponential attraction and rate of convergence of attractors with application to a perturbed damped wave equation
Informações sobre o DOI: 10.1007/s00028-022-00811-9 (Fonte: oaDOI API)
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
3080812.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas