Semi-supervised graph attention networks for event representation learning (2021)
- Authors:
- USP affiliated authors: MARCACINI, RICARDO MARCONDES - ICMC ; MATTOS, JOÃO PEDRO RODRIGUES - ICMC
- Unidade: ICMC
- DOI: 10.1109/ICDM51629.2021.00150
- Subjects: MINERAÇÃO DE DADOS; APRENDIZADO COMPUTACIONAL
- Keywords: network embeddings; event analysis; representation learning
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Los Alamitos
- Date published: 2021
- Source:
- Título: Proceedings
- Conference titles: IEEE International Conference on Data Mining - ICDM
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
MATTOS, João Pedro Rodrigues e MARCACINI, Ricardo Marcondes. Semi-supervised graph attention networks for event representation learning. 2021, Anais.. Los Alamitos: IEEE, 2021. Disponível em: https://doi.org/10.1109/ICDM51629.2021.00150. Acesso em: 10 jan. 2026. -
APA
Mattos, J. P. R., & Marcacini, R. M. (2021). Semi-supervised graph attention networks for event representation learning. In Proceedings. Los Alamitos: IEEE. doi:10.1109/ICDM51629.2021.00150 -
NLM
Mattos JPR, Marcacini RM. Semi-supervised graph attention networks for event representation learning [Internet]. Proceedings. 2021 ;[citado 2026 jan. 10 ] Available from: https://doi.org/10.1109/ICDM51629.2021.00150 -
Vancouver
Mattos JPR, Marcacini RM. Semi-supervised graph attention networks for event representation learning [Internet]. Proceedings. 2021 ;[citado 2026 jan. 10 ] Available from: https://doi.org/10.1109/ICDM51629.2021.00150 - Aprendizado de máquina com informação privilegiada: abordagens para agrupamento hierárquico de textos
- Aprendizado não supervisionado de hierarquias de tópicos a partir de coleções textuais dinâmicas
- Opinion mining for App reviews: identifying and prioritizing emerging issues for software maintenance and evolution
- Proceendings of 19th National Meeting on Artificial and Computational Intelligence
- Complaint analysis in fintech domain: a case study in Brazilian brokerage firms
- iRisk: a scalable microservice for classifying issue risks based on crowdsourced App reviews
- Monitoring temporal dynamics of issues in crowdsourced user reviews and their impact on mobile App updates
- DODFMiner: an automated tool for named entity recognition from Official Gazettes
- Legal document segmentation and labeling through named entity recognition approaches
- Issue detection and prioritization based on mobile application reviews
Informações sobre o DOI: 10.1109/ICDM51629.2021.00150 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3060421.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
