Fast and lightweight binary and multi-branch Hoeffding tree regressors (2021)
- Authors:
- USP affiliated authors: CARVALHO, ANDRÉ CARLOS PONCE DE LEON FERREIRA DE - ICMC ; MASTELINI, SAULO MARTIELLO - ICMC
- Unidade: ICMC
- DOI: 10.1109/ICDMW53433.2021.00053
- Subjects: APRENDIZADO COMPUTACIONAL; RECONHECIMENTO DE PADRÕES
- Keywords: Hoeffding tree regressor; online learning; incremental learning; computational resource savings
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Los Alamitos
- Date published: 2021
- Source:
- Título: Proceedings
- Conference titles: International Conference on Data Mining Workshops - ICDMW
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
MASTELINI, Saulo Martiello et al. Fast and lightweight binary and multi-branch Hoeffding tree regressors. 2021, Anais.. Los Alamitos: IEEE, 2021. Disponível em: https://doi.org/10.1109/ICDMW53433.2021.00053. Acesso em: 04 ago. 2025. -
APA
Mastelini, S. M., Montiel, J., Gomes, H. M., Bifet, A., Pfahringer, B., & Carvalho, A. C. P. de L. F. de. (2021). Fast and lightweight binary and multi-branch Hoeffding tree regressors. In Proceedings. Los Alamitos: IEEE. doi:10.1109/ICDMW53433.2021.00053 -
NLM
Mastelini SM, Montiel J, Gomes HM, Bifet A, Pfahringer B, Carvalho ACP de LF de. Fast and lightweight binary and multi-branch Hoeffding tree regressors [Internet]. Proceedings. 2021 ;[citado 2025 ago. 04 ] Available from: https://doi.org/10.1109/ICDMW53433.2021.00053 -
Vancouver
Mastelini SM, Montiel J, Gomes HM, Bifet A, Pfahringer B, Carvalho ACP de LF de. Fast and lightweight binary and multi-branch Hoeffding tree regressors [Internet]. Proceedings. 2021 ;[citado 2025 ago. 04 ] Available from: https://doi.org/10.1109/ICDMW53433.2021.00053 - Efficient online tree, rule-based, and distance-based algorithms
- A meta-learning approach for selecting image segmentation algorithm
- Online local boosting: improving performance in online decision trees
- Using dynamical quantization to perform split attempts in online tree regressors
- Online extra trees regressor
- Efficient online tree, rule-based and distance-based algorithms
- 2CS: correlation-guided split candidate selection in Hoeffding tree regressors
- SWINN: efficient nearest neighbor search in sliding windows using graphs
- Improved prediction of soil properties with multi-target stacked generalisation on EDXRF spectra
- Towards meta-learning for multi-target regression problems
Informações sobre o DOI: 10.1109/ICDMW53433.2021.00053 (Fonte: oaDOI API)
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
3060230.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas