Some aspects of Reidemeister fixed point theory, equivariant fxed point theory and coincidence theory (2022)
- Authors:
- USP affiliated authors: BORSARI, LUCILIA DARUIZ - IME ; CARDONA, FERNANDA SOARES PINTO - IME ; GONCALVES, DACIBERG LIMA - IME
- Unidade: IME
- DOI: 10.1007/s40863-021-00278-5
- Assunto: TOPOLOGIA ALGÉBRICA
- Language: Inglês
- Imprenta:
- Publisher place: Heidelberg
- Date published: 2022
- Source:
- Título: São Paulo Journal of Mathematical Sciences
- ISSN: 1982-6907
- Volume/Número/Paginação/Ano: v. 16, Special issue commemorating the Golden Jubilee of the Institute of Mathematics and Statistics of the University of São Paulo, p.508–538, 2022
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BORSARI, Lucilia Daruiz e CARDONA, Fernanda Soares Pinto e GONÇALVES, Daciberg Lima. Some aspects of Reidemeister fixed point theory, equivariant fxed point theory and coincidence theory. São Paulo Journal of Mathematical Sciences, v. 16, p. 508–538, 2022Tradução . . Disponível em: https://doi.org/10.1007/s40863-021-00278-5. Acesso em: 21 jan. 2026. -
APA
Borsari, L. D., Cardona, F. S. P., & Gonçalves, D. L. (2022). Some aspects of Reidemeister fixed point theory, equivariant fxed point theory and coincidence theory. São Paulo Journal of Mathematical Sciences, 16, 508–538. doi:10.1007/s40863-021-00278-5 -
NLM
Borsari LD, Cardona FSP, Gonçalves DL. Some aspects of Reidemeister fixed point theory, equivariant fxed point theory and coincidence theory [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ; 16 508–538.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s40863-021-00278-5 -
Vancouver
Borsari LD, Cardona FSP, Gonçalves DL. Some aspects of Reidemeister fixed point theory, equivariant fxed point theory and coincidence theory [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ; 16 508–538.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/s40863-021-00278-5 - Jordan theorems for embeddings and immersions in codimension one
- Equivariant path fields on topological manifolds
- Obstruction theory and minimal number of coincidences for maps from a complex into a manifold
- Obstruction theory and minimal number of coincidences for maps from a complex into a manifold
- The first group (co)homology of a group G with coefficients in some G-modules
- A Van Kampen type theorem for coincidences
- On the computation of the relative Nielsen number
- Reidemeister theory for maps of pairs
- On the computation of the relative Nielsen number
- The relative Reidemeister numbers of fiber map pairs
Informações sobre o DOI: 10.1007/s40863-021-00278-5 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3059739 - Some aspects of... | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
