Obstruction theory and minimal number of coincidences for maps from a complex into a manifold (2001)
- Authors:
- USP affiliated authors: BORSARI, LUCILIA DARUIZ - IME ; GONÇALVES, DACIBERG LIMA - IME
- Unidade: IME
- Assunto: TOPOLOGIA ALGÉBRICA
- Language: Inglês
- Imprenta:
-
ABNT
BORSARI, Lucilia Daruiz e GONÇALVES, Daciberg Lima. Obstruction theory and minimal number of coincidences for maps from a complex into a manifold. . São Paulo: IME-USP. . Acesso em: 21 jan. 2026. , 2001 -
APA
Borsari, L. D., & Gonçalves, D. L. (2001). Obstruction theory and minimal number of coincidences for maps from a complex into a manifold. São Paulo: IME-USP. -
NLM
Borsari LD, Gonçalves DL. Obstruction theory and minimal number of coincidences for maps from a complex into a manifold. 2001 ;[citado 2026 jan. 21 ] -
Vancouver
Borsari LD, Gonçalves DL. Obstruction theory and minimal number of coincidences for maps from a complex into a manifold. 2001 ;[citado 2026 jan. 21 ] - The first group (co)homology of a group G with coefficients in some G-modules
- A Van Kampen type theorem for coincidences
- Some aspects of Reidemeister fixed point theory, equivariant fxed point theory and coincidence theory
- Jordan theorems for embeddings and immersions in codimension one
- Grupos de bordismo de ações semilivres de 'S POT.1' em variedades spin
- Bordism of semifree circle actions on spin manifolds
- Equivariant path fields on topological manifolds
- Grupos de homologia singular de grafos convexos
- Classification of the virtually cyclic subgroups of the pure braid groups of the projective plane
- Realization of primitive branched coverings over closed surfaces following the Hurwitz approach
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
