Obstruction theory and minimal number of coincidences for maps from a complex into a manifold (2001)
- Authors:
- USP affiliated authors: BORSARI, LUCILIA DARUIZ - IME ; GONCALVES, DACIBERG LIMA - IME
- Unidade: IME
- Assunto: TOPOLOGIA ALGÉBRICA
- Language: Inglês
- Imprenta:
-
ABNT
BORSARI, Lucilia Daruiz; GONÇALVES, Daciberg Lima. Obstruction theory and minimal number of coincidences for maps from a complex into a manifold. [S.l: s.n.], 2001. -
APA
Borsari, L. D., & Gonçalves, D. L. (2001). Obstruction theory and minimal number of coincidences for maps from a complex into a manifold. São Paulo: IME-USP. -
NLM
Borsari LD, Gonçalves DL. Obstruction theory and minimal number of coincidences for maps from a complex into a manifold. 2001 ; -
Vancouver
Borsari LD, Gonçalves DL. Obstruction theory and minimal number of coincidences for maps from a complex into a manifold. 2001 ; - A Van Kampen type theorem for coincidences
- The first group (co)homology of a group G with coefficients in some G-modules
- Grupos de homologia singular de grafos convexos
- Grupos de bordismo de ações semilivres de 'S POT.1' em variedades spin
- Bordism of semifree circle actions on spin manifolds
- Inclusion of configuration spaces in Cartesian products, and the virtual cohomological dimension of the braid groups of 𝕊2 and ℝP2
- The cohomology ring of certain families of periodic virtually cyclic groups
- Coincidence of maps between surfaces
- Equations in free groups and coincidence of mappings on surfaces
- Postnikov towers and Gottlieb groups of orbit spaces
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas