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Abstract

In this survey the authors present a brief description of their contribution to Nielsen
fixed point theory. Aspects of Reidemeister theory, equivariant fixed point theory
and coincidence theory are discussed.
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1 Introduction

This survey compiles the major part of the work developed by the authors (not as a
group) on Nielsen fixed point theory in a broad sense. It is divided into four sections
which may be read independently of one another. The main results are explicitly
stated and, even though not much details are provided, we present all necessary ref-
erences. The appendix, on the other hand, contains detailed alternative proofs of cer-
tain results on equivariant fixed point theory. For an extensive survey on the subject
we refer to the Handbook of Topological Fixed Point Theory, see [10].

The well known Lefschetz Fixed Point Theorem states that for a finite sim-
plicial complex K and a continous function f : K — K with L(f), the Lefschetz
number of f, different from zero, the existence of a fixed point of f is guaranteed.
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By a fixed point of f we mean a point x € K such that f(x) = x. Since the Lefs-
chetz number is a homotopy invariant, we conclude that every map g homotopic
to f will also have a fixed point.

In this context, it is natural to ask wheather a map f : K — K with L(f) =0
can be deformed to a map with no fixed points. This result is not true in general
and Nielsen in [44], introduced another homotopy invariant, known as the Nielsen
number of f, N(f), which counts the number of essencial fixed point classes.

In Nielsen Fixed Point Theory, a notion of a fixed point class is defined by say-
ing that two fixed points x, and x, are in the same Nielsen class of f'if there exists
a path 4, from x; to x;, such that f(4) is homotopic, as paths, to A. An index of
a Nielsen class is also defined and the Nielsen number is the number of classes
with non zero index, the essencial ones. The Lefschetz number then represents
the global index of the fixed point set and N(f) is a lower bound to the minimal
number of fixed points in the homotopy class of f.

A presentation of Nielsen Fixed Point Theory for maps defined in simplicial
complexes can be found in [9, 39] and [41].

It is clear that N(f) = 0 implies L(f) =0 and there are plenty of examples
where L(f) = 0 but N(f) # 0. Therefore Nielsen number represents, a sharper
homotopy invariant with respect to fixed points associated to a homotopy class
of a map. The original question, namely, under what conditions we may have
a converse of the Lefschetz Fixed Point Theorem, is then replaced by deciding
wheather N(f) = O suffices to guarantee that f can be deformed to a fixed point
free map.

Under this perspective, many other questions arise and we mention some of
them focusing in those that are connected to the contribuitions related to the
Algebraic Topology group of IME-USP.

1. Isit possible to stablish settings where the Nielsen number of a map f, N(f), may
represent exactly the minimum number of fixed points in the homotopy class of
7 In case of a positive answer for all maps f : X — X, we say that the space X
satisfies the Wecken property. This question includes the original one when we
assume N(f) = 0.

2. Can we provide answers to the original question when we look at specific homot-
opy classes of maps? A special case of interest is looking at deformations, i.e.,
the homotopy class of the identity map.

3. Can we provide ways of evaluating the Nielsen number?

Similar notions and questions may be asked in the coincidence context, that
is, when we take a pair of maps f,g : X - Y and look at the coincidence set
C(f,8) ={xeX|f(x) =g}

Nevertheless it should be pointed out that to set up the correspondent coinci-
dence theory, the degree of complexity is much higher, due to the fact that the
domain and the target do not have to be the same and may have a quite different
nature. So far, besides the case where the spaces involved are orientable mani-
folds of the same dimension n, with n bigger than or equal to three, there is not a
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well defined coincidence theory even when we assume that both spaces are finite
complexes, let alone for the more general situation where the spaces are ENR’s.

There is a handfull of works providing, under certain conditions, positive answers
to these questions and, in most of them, the spaces involved are manifolds or finite
simplicial complexes. In particular, question 1 has a positive answer for maps
f M — M, where M is a compact triangulable manifold of dimension different
from 2, see [51].

This survey is divided into four sections besides this introduction. In Sect. 2,
connected with the question of evaluating Nielsen numbers, some results on Rei-
demeister Theory are presented. Section 3 is devoted to some aspects of equivariant
fixed point theory. We turn our attention to coincidence theory in Sect. 4 . An appen-
dix constitutes Sect. 5 where a proof of Theorem 3.1 using obstruction methods is
presented.

2 On Reideimeister numbers for fixed points

The results and the example that will be presented in this section were taken
from[11, 12] and [13] and their statements were copied almost verbatim from these
references.

As we mentioned before, for a compact simplicial complex X, the Nielsen num-
ber of amap f : X — X is a homotopy invariant and a lower bound to the minumum
number of fixed points in the homotopy class of f, and under certain conditions,
these two numbers coincide. Therefore, one important question in Nielsen theory is
to evaluate Nielsen numbers. One possible approach to evaluate the Nielsen num-
ber is through the Reidemeister number of f, R(f), defined as the number of equiva-
lence classes, under conjugation, of liftings of f to the universal covering space of
X. Introduced in 1936 by K. Reidemeister [45], it is an upper bound for the Nielsen
number, N(f) < R(f). B. Jiang (in [39]) defined a subgroup, J(X), of the fundamental
group of X, x,(X), known as the Jiang subgroup and studied the spaces for which
J(X) = m;(X). Spaces with this property are called Jiang-spaces and for them all
Nielsen fixed point classes have the same index. If X is a Jiang space and L(f) # O,
we have R(f) = N(f). Since the Reidemeister number is easier to compute than the
Nielsen number, it is an useful concept in fixed point theory.

In different settings such as maps of pairs or fiber maps, analogs of the Nielsen
number are defined. Developed in works of Brown [9], Schirmer [47], Jiang [39] and
Zhao [57], the relative Nielsen number and its related numbers, such as the Nielsen
number on the complement, the Nielsen number of the closure, the Nielsen number
of the triad, the surplus Nielsen number, among others, have made the study of fixed
points more accurate, in the sense that those Nielsen numbers are better bounds for
the respective minimum numbers of fixed points.

Initially, let us consider a pair of spaces (X, A), where X is a compact, connected
polyhedron, A C X is a finite subpolyhedron, not necessarily connected, and let
f  (X,A) — (X, A) be a map of the pair, thatis f : X — X such that f(A) C A.

By extending the concept of a universal covering space, using the conju-
gacy by deck transformations and the index of fixed point classes as defined
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by Jiang (see [39]), we classify and count the number of classes of liftings of
a map (see [11]). This approach, more geometrical, suggests the definition of
a Reidemeister number of the complement, R(f;X — A), and a relative Reide-
meister number, R(f;X,A), both of which are homotopy invariants for maps of
the pair and satisfy many properties that the usual Reidemeister number does.
We have that R(f;X — A) is an upper bound for the Nielsen number of the com-
plement N(f;X — A) defined in [57] and R(f;X — A) = N(f;X — A) when (X, A) is
a Jiang pair (i.e., (X, A) is a pair of compact polyhedra, where X is a connected
Jiang space) and the Lefschetz number of f is not zero. Similarly, R(f;X,A) is
an upper bound for the relative Nielsen number N(f;X,A) defined in [47] and
R(f;X,A) = N(f;X,A) when (X, A) is a Jiang pair and the Lefschetz number of f,
L(f), is not zero.
To illustrate, we consider the example showed in [11].

Example 1 Let X = P? be the real projective space, with universal covering space
X = $2and covering projection p : s2 — p? defined by p(x,y,2) = {(x,y,2), (=x, =y, =2)};
its covering transformations y; : X— X are 716, y,2) = (x,y,2) =1dy and
7,(x,y,2) = (—x, =y, —z) (the antipodal map). Let A = {(1,0,0),(-1,0,0)} C X, a
point in P?; thus, its universal covering space is A = A, its covering projection is
p, = id,, and it has covering transformation y : A — A given by y; = id;.

Let f : X — X be defined by

f({(xd’, Z)’ (_x7 -y, _Z)}) = {(_-x9y7 _Z)7 (.X, -, Z)}

Then, we have two liftings fl(x, v,2) = (=x,y,—2z) and fz(x, v,2) = (x, =y, ). Since
fi # viohory  and f; # y,y0fy07; ", we have two classes of liftings, defined by con-
jugation by deck transformations; the number of such classes is the geometric defini-
tion of the Reidemeister number, therefore R(f) = 2. Likewise, observe that

f{(1,0,0),(-1,0,0)}) = {(-=1,0,0),(1,0,0)} = id, ,

therefore f, =id, and R(f;) = 1.

Since we are dealing with lifting classes, we want somehow to count the classes
of liftings of f that are related to the classes of liftings of f,. The usual way of relat-
ing these two types of classes, is well explained in [39, Chapter 3]. In order to do
that, consider the inclusion

itAs X
{(1,0,0),(=1,0,0)} = {(1,0,0),(=1,0,0)} ,
a lifting of i is amap i : A — X satisfying the equality pyoi = iop,. This gives us
two possibilities:

1,({(1,0,0),(=1,0,0)}) = (1,0,0) or i,({(1,0,0),(=1,0,0)}) = (=1,0,0)

We will, then, look at the liftings f , of f, that will make the following diagram
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commutative, for j = 1 or 2, because this is a correspondence that doesn’t depend on
the lifting we pick, only on the map i itself. One can see, for i,, that the lifting f; of f
is the one such that f,0i, = i,0f,. Also, the above equality doesn’t hold for f, in the
place of f;. In this particular example, we are identifying the liftings and the lifting
classes. So, the number of lifting classes of fthat are not related to the lifting classes
of f, is 1 and this will be our Reidemeister number of the complement, for this par-
ticular map. Again, looking at the relative Nielsen number, we will say that the rela-
tive Reidemeister number is the number of lifting classes of f, plus the number of
lifting classes of f that are not related to them; in this case, we have that the relative
Reidemeister number is 2.

For an alternative algebraic formulation of the Reidemeister number (see
[12]), notice that there is a group automorphism, @, of the fundamental group of
a space, # = 7(X), that gives a one-to-one correspondence between Reidemeister
classes and lifting classes. This originates a Reidemeister action of z on 7, where
the Reidemeister classes are the orbits of this action. The Reidemeister number
of a map, R(f), thus is the cardinality of the set of orbits, #R(¢, 7). Similarly, for
every f-invariant component A, of A, we have, for each &, R(f,) = #R(¢,, ;) and
we define R(fy) = #R(@,4, 7,) = Y, #R (@, mp).

It is possible to amplify the class of spaces where these definitions can be use-
ful, although many of the results are also valid for more general spaces such as
compact ANRs or spaces which admit a fixed point index with the usual proper-
ties and for which universal covering spaces exist.

A space X is a Jiang-type space, as defined by P. Wong (see [55]), if the fol-
lowing conditions are satisfied for all selfmaps f : X — X:

(CH L{(f)=0= N(f) =0;
(C2) L(f) # 0= N(f) =R(f).

As examples of Jiang-type spaces we have the classical Jiang spaces, nilmani-
folds, and certain classes of solvmanifolds and homogeneous spaces.
In [12], a Jiang-type result was proven

Theorem 2.1 [12, Theorem 3.2] Suppose that (X, A) is a pair of Jiang-type spaces,
such that L(f) - (T[], L(f) # 0, then N(f;X, A) = R(f:X, A).

Turning our attention to fibrations, let p : E — B be a Hurewicz fibration
where each fiber F = p~!(b) over b € B, E and B are 0-connected compact ANRs.
A selfmap f : E — E is fiber-preserving if f induces a map f : B — B such that

fop = pof.
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The Nielsen-type number for fiber-preserving maps, denoted by N(f,p), can
be realized as a sharp lower bound for the number of fixed points in the fiberwise
homotopy class of f (see [36]). Under Jiang-type conditions it is possible to cal-
culate it as the relative Reidemeister number R(f;E, F 5), as established in [12] as
follows

Theorem 2.2 [12, Theorem 5.1] Let p : E —> B be a Hurewicz fibration with typi-
cal fiber F = p~'(b), b € B, E and B O—connected compact ANRs. Suppose that E
and F are of Jiang-type. For any set & of essential representatives of fixed points of

£
L) - [ L) #0

b;e&
then
N.(f,p) =R(f:E, Fi) .

Here ]_‘ denotes the induced map in the base and f, the restriction of f on the
fiber over b € Fix(f).

We further explore algebraic conditions under which the computation of the
relative Reidemeister number may be simplified, leading to the following theorem
(see [12])

Theorem 2.3 [12, Theorem 5.2] Let p : E— B be a Hurewicz fibration with
typical fiber F =p~'(b), b € B, E and B O—connected compact ANRs. Suppose
that 7,(B) is trivial. Let f . E — E be a fiber-preserving map with induced map
f i B— B and & be a set of essential representatives of fixed points of f. For
beg, let fy;, : m(B,b) — 7(B,b) be the induced homomorphism. If for any
beé, Fix(f#yb) = 1, then R(f;E, Fl,f) = R(f). If, in addition, F and E are Jiang-type
spaces and L(f) - Hb,ef L(f,) # 0, then

N(fiE, F;) = Ng(f,p) = R(f;E, F;) = R(f) .

As a remark (we reproduce [12, Remark 6]) observe that the condition
Fix(fy,) = 1for every b € £ is the same as the “essentially fix trivial” condition as
in [36]. Essentially fix trivial spaces include the class of solvmanifolds and there-
fore the class of nilmanifolds.

Let p : E— B be a Hurewicz fibration and f : E — E a fiber preserv-
ing map. R. Brown [8] initiated the study of the Nielsen fixed point theory for
fiber-preserving maps and gave conditions for which N(f) = N(f, )N(f), where f
denotes the induced map in the base and f, the restriction of f on the fiber over
b € Fix(f). Such a product formula was further studied by Fadell in [19] and nec-
essary and sufficient conditions for its validity were given by You in [56].

One of the standing assumptions in these works is that the fibration p be ori-
entable. By relaxing this assumption, an addition formula, rather than a product
formula has been obtained by Heath, Keppelmann and Wong in [36]. The main
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objective of these formulas is to compute the Nielsen number of fin terms of pos-
sibly simpler Nielsen type invariants of f and of f,.

In his thesis [48], A. Schusteff established the product formula for the relative
Nielsen number of a fiber preserving map of pairs. More precisely, given a com-
mutative diagram

(B, Ey) —— (£, Ey)
pJ/p(J plpo
(B, By) —— (B, By)

conditions were given to ensure that the product formula holds, i.e.,
N(f;E, Ey) = N(f,;F, Fy, ) N(f;B, By)

where EO—>B0 is a sub-fibration of a Hurewicz fibration E-L5B and F,, F,, are
the fibers of p and p,, respectively, over b € F1x(f)| p,- Furthermore, a relative Rei-
demeister number R(f;E, E;) was introduced in [48] to give computational results
when the spaces are Jiang spaces.

The main objective of the work by F. Cardona and P. Wong, see [13], is to
compute the relative Reidemeister number R(f;E,E;) and the relative Reide-
meister number on the complement R(f;E — E|)) of fiber-preserving maps of pairs.
In order to give an algebraic formulation of the relative Reidemeister numbers
for fiber preserving maps, we adapted what was done in [34] for the Reidemeister
number for coincidences via an algebraic approach, for our fixed-point settings.

Let 7y denote the group of deck transformations of the universal cover of X;
thus zy is also identified with z;(X) with one appropriate basepoint.

Let (E, p, B) be a Hurewicz fibration with the typical fiber F = p~!(b) for
b € B, with all spaces being 0-connected. Let f : E — E be a fiber preserving
map. Suppose K = keri, where iy : 7; — 7y is induced by i : F & E. We will
denote by iy the induced map on the quotient, iy : 7/K — 7. Also, the set
of orbits of the Reidemeister action of ¢’ in z,/K will be denoted by Ry (¢’, 7).
Moreover, we can suppose, without loss of generality, that iy, is the inclusion
map (notice that 7 /K = Imiy, < 7). In what follows we will indicate the con-
jugation map by 7,(f) = afa~!, without being explicit where it is defined, since
the context will make it clear. The following theorem (see [13]) gives a general
formula for a fiber-preserving map.

Theorem 2.4 [13, Theorem 2.1] Let (E, p, B) be a fibration as described above; let f
be a fiber-preserving map. Then, there is a one-to-one correspondence between the
sets

Rz < || iRz, @70,
[aleR(@.7p)

@ Springer



Sao Paulo Journal of Mathematical Sciences (2022) 16:508-538 515

where l;;( is induced by iy defined above, for any [a] € p ~'([a]). If the cardinalities
of the sets involved are finite, we have

RO= 3 ¥ 1

[@ER@.7p) [l [FiX(Tﬁa) :p#(FiX(Tﬂa¢))]

where [f] € R(z, ¢/, 77) anda] € P~ (@)).

Let a € R(@, ng). The index of a is simply index(f, np Fix(af)), the usual fixed
point index, where # : E — E denotes the universal covering. So, if index of a
is nonzero then a is said to be essential. Denote by M@, ny) the set of essential
a € R(p, n). Therefore, N(f) = #M(@, x;;). Similarly, we denote by Ny(¢', zx)
the set of essential @’ € R (¢, 7r), and N (") = #Ny (@', 7p).

Definition 2.1 Let f be a fiber-preserving map, let @ and @ be the homomorphisms
induced by fand f. We say that fis locally (resp. essentially locally) Fix group uni-
form if

[Fix(rz @) : py(Fix(z, @))]

does not depend on [a] € p ~!([a]) (resp. [a] € p ~'([@]) " M@, )). Similarly,
we say that fis globally (resp. essentially globally) Fix group uniform if

[Fix(zz @) : py(Fix(z, 9))]

does not depend on [a] € R(ep, rp) (resp. Mg, mp)).

A fiber map of the pair is a pair of fiber preserving maps (f,f,) : (E.E,) — (E, E,)
with f, = flg, where (Ey, py, By) is a Hurewicz sub-fibration of a Hurewicz fibra-
tion (E, p, B). Also, we assume that E, E, B, B, and the typical fibers are all 0—
connected spaces.

Just as before, consider K, =ker iy, where iy : 7z — 7y is induced by
iy - Fy @ E,. Denote by iO#KO the induced map on the quotient, the set of orbits of

the respective Reidemeister action by RKU((/’(,)’ 7g,), and the respective cardinality,
#R (@y 7r,)s by Ry (f7). We will denote the set of orbits of the Reidemeister
action of ¢’ which are in the image of the orbits of the Reidemeister action of (p6
under 7y /Ky — 7p/K by R (@',9)), and the respective cardinality,
#R x, (@', @)), by Ry ¢ (f'. /). Moreover, we can suppose, without loss of gener-
ality, that iy is the inclusion map (notice that 7z /K = Im iy, < 7p).

Similar to Ny and Ng, we can define Ny ¢ (¢', ¢f) as the set of essential
o € Ry x (@, @), and Ny ¢ (', f) = #Ng & (@, @)).

The following theorem (see [13]) in which R(f;E, E) and R(f;E — E) are com-
puted or estimated in terms of the relative Reidemeister numbers of f and of f,
generalizes some of the results of [48].
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Theorem 2.5 [13, Theorem 3.4] Let (f.f,) be a fiber map of the pair. Let
K =keriy and K, = keriy. Suppose f is globally Fix group uniform and let
s = [Fix(p) : pu(Fix(@))], then

R(f:E - E)
1
= ;{ Z #R (7, ¢, np) — Z #RK,KU(Ta ¢, Tay q)g)}
[@]eR(@.mp) [a]eR(@.9,)
and,
#R i (t, @', 7r)
R(fE, E,) = Z = & oo oF Fy
1 oy PN 80) © Poy(Fix(z,, )
1
+ E{ Y #R (@ T = ) #Rk (1,07, ¢6)}.

[@ER@.75) [@ER@.P7)

Also, if (E, Ey) is a Jiang-type pair with nonzero Lefschetz numbers, L(f) - L(f,) # 0,
then we have the respective Nielsen numbers

N(f:E — Ey)
1
= ;{ Z #Ny (7, @', 7p) — Z #Ng k, (T, @' 7 (06)}
[@IEN(@.7p) [@]eN@.90)
and,
#N, (74, @ 7r,)
N(f:E, E;) = Z = K ' % OF' F,
(@ 1eN@n.75,) [ 1X(T% @) - PO#( IX(T% @)l
1
+ E{ Y #N( @) - Y #Ngk (5,0, (p6)}.

[@]eM@.xp) [@]eM@.9,)

As an application, using the relative Reidemeister number on the complement
and equivariant fixed point theory, in the last section of [4] we estimated the
asymptotic Nielsen type number, denoted by NI®(f) (for more information on the
later, see [40]), when fis a fiber-preserving map on a compact polyhedron. This
is Theorem 4.1. For the sake of simplicity let us state only a consequence of this
theorem, which is proved there:

Corollary 2.1 [13, Corollary 4.2] If X is a solvmanifold and R(f_”) < oo for all n, then
for any prime p,

NI®(f) > Growth,_, D #R(1, 9. 75
[ER@;.75 )R @, 00,)

where fis a fiber-preserving map of a Mostow fibration of X.
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3 Some aspects of equivariant fixed point theory

In this section we intend to describe some results related to the questions men-
tioned at the introduction when considering the equivariant setting.

Some of the results presented in this section were taken from [1] and from [23]
and their statements were copied verbatim from these references.

We will start by setting some notation. Consider a finite group G and an
n-dimensional smooth compact G-manifold. For a subgroup H of G, we define
M?T={xeM|hx=x,Yhe H} and for f : M - M a G-map we denote by
fA . M — MM the restriction of fto M.

We say that fis G-deformable to a fixed point free map if there exists a map f],
G-homotopic to f, with no fixed points. Observe that if this is the case, then every
1 M" — M"Y is deformed to a fixed point free map, for every subgroup H of G.

In the work G-Deformation to Fixed Point Free Maps via Obstruction Theory,
by L. D. Borsari e D. L. Gongalves, see [2], the converse of the above statement
is obtained under certain conditions, namely:

Theorem 3.1 Let M be a compact differentiable manifold and assume the action of
G on M satisfies one of the following conditions:

(a) Given any two isotropy groups H and K, with H < K, then the codimension of
any connected component of MX in MY is different from one. Furthermore, the
dimension of each component of M" is different from 2, for every H < G.

(b) Each component of M™ is simply connected, for all H < G.

Then if f : M — M is a G—map such that, for every H < G, f : M7 — M" is
deformable to a fixed point free map it follows that f is equivariantly deformable
to a fixed point free map.

This result is proved in a pre-print which has not been submitted to publica-
tion because by the time it was being written down, back in 1987, a work by
E. Fadell and P. Wong, see [22], was published with the same main results as
ours, although proved with different techniques. The proof we gave was based on
obstruction theory methods, where an appropriate local system of coefficients for
cohomology is set up. We will take this opportunity to present this work in the
appendix section, since it seems to us that the technique is interesting in its own
and may be useful to treat other cases.

Observe that when a space is simply connected, there will be only one Nielsen
class and therefore the Nielsen number is either zero or one. If the Lefschetz
number is zero, then the Nielsen number will also be zero.

Moreover, under the conditions stated in the theorem above and assuming also
that each component of M¥ has dimension bigger than or equal to three, for all
H < G, it is true that N(ff) = 0 implies that f¥ is deformable to fixed point free
map and therefore fis equivariantly deformed to a fixed point free map.
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Turning to the question involving deformations, i.e., maps homotopic to the iden-
tity, we begin by quoting a classical theorem of H. Hopf (see [37]) which states
that a closed connected orientable smooth manifold M admits a non-singular vector
field if and only if the Euler characteristic of M, y(M), vanishes. R. Brown, in [7],
extended this result to topological manifolds, by replacing vector fields with path
fields, a concept first introduced by J. Nash in [43]. R. Brown showed that a compact
topological manifold admits a non-singular path field if and only if y(M) = 0.

The non-singular path field problem is equivalent to the fixed point free deforma-
tion problem, that is, M admits a non-singular path field if and only if the identity
map on M is homotopic to a fixed point free map. Since the Euler characteristic of a
manifold M coincides with the Lefschetz number of a map homotopic to the identity
on M, the converse of the Lefschetz Fixed Point Theorem holds true for deforma-
tions on topological closed, orientable manifolds.

Moreover, the existence of a path field allows one to show the Complete Invari-
ance Property (CIP). A topological space M is said to have CIP if for any non-empty
closed subset A of M, there exists a map f : M — M having A as its fixed point set.
Similarly, M has CIP with respect to deformation (denoted by CIPD) if f : M - M
is homotopic to the identity on M.

L. D. Borsari, F. Cardona and P. Wong, in the work Equivariant Path Fields on
Topological Manifolds, see [1], an equivariant analog of Brown’s results in [7] are
given for locally smooth G-manifolds, for G a finite group. More specifically, the
following theorems hold true:

Theorem 3.2 [1, Theorem 3.7] Let G be a finite group and M a compact locally
smooth G-manifold. Then there exists a G-path field on M having at most one singu-
lar orbit in the closure of each component of My,. Moreover, M admits a non singu-
lar G-path field if and only if | y |(My) = 0, for all H < G.

Theorem 3.3 [1, Theorem 4.1]) Let G be a finite group and M a compact locally
smooth G-manifold. Suppose for each isotropy type (H), M has dimension at
least 2. Let A C M be a non-empty closed invariant subset. Then the following are
equivalent:

(@) There exists a G-deformation ¢ : M — M such that A = Fix(¢). _
(b) AN C # @ whenever y(C) # @ for any connected component C of My and C
denotes the closure of C n M¥.

Finally, related to the question of computing Nielsen numbers, as we mentioned
in the previous section, in the non-equivariant case, for a compact, connected mani-
fold M, B. Jiang (in [39]) defined a subgroup, J(M), of the fundamental group of M,
7; (M), and studied the spaces for which J(M) = z;(M), the Jiang spaces. For these,
all Nielsen fixed point classes have the same index and if L(f) = 0 then N(f) = 0. In
case L(f) is not zero then the Nielsen number coincides with the Reidemeister num-
ber of f.
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The notions of G- equivariant Nielsen classes and of G-Jiang spaces were defined
by P. Wong in [53] and [54] and it is also true that for a G-Jiang space, all equivari-
ant Nielsen classes have the same index.

Fagundes and Gongalves in a work named Fixed Point Indices of Equivariant
Maps of Certain G-spaces, see [23], consider the family of spaces X for which all
maps f : X — X have the property (called J-property) that all Reidemeister classes
have the same index. In many cases, spaces with this property are not G-Jiang
spaces. For spaces having the J-property, they obtained the following result:

Theorem 3.4 [23, Theorem 3.4] Let X satisfy the J-property and G be a finite group
which acts freely on X. If the G-spaces X have the property that the fundamental
group of the orbit space is torsion free, then all equivariant Nielsen classes of a
given equivariant map f : X — X have the same index. Furthermore the index of
each such class is |G| times the index of one of the Nielsen classes of f.

4 Coincidence theory via classical obstruction theory

Let f,g : X = Y be a pair of maps between two topological spaces. Denote by
C(f,g) = {x € X|f(x)=g(x)}and let u(f, g) be the minimal number among the car-
dinalities of C(f’, g"), as f, g’ varies in the homotopy classes of f, g, respectively.

When X, Y are closed orientable manifolds of the same dimension, the fact that
C(f,g) # ¥ is guaranteed by the classical Lefschetz coincidence theorem provided
the Lefschetz coincidence number L(f, g) is nonzero.

Schirmer in [46] developed the coincidence Nielsen Theory in this context. Two
coincidence points x; and x; are in the same coincidence Nielsen class of the pair
(f, g) if there exists a path A, from x, to x;, such that f(4) is homotopic, as paths, to
g(4). An index of a Nielsen coincidence class is also defined and the Nielsen coin-
cidence number, N(f, g), is the number of classes with non zero index, the essen-
cial ones. The Lefschetz coincidence number then represents the global index of the
coincidence set and N(f, g) is a homotopy invariant and therefore a lower bound to
the minimal number of fixed points in the homotopy class of the pair (f, g). Schirmer
also proves that N(f, g) = u(f, g), when the dimension of the manifolds are bigger
than or equal to three.

Dobrenko and Jezierski [15] succeeded developing a type of Coincidence Nielsen
theory for maps between manifolds of the same dimension without the hypothesis
of orientability. This extension came together with a new feature when comparing
with the classical case, namely, the local index, called semi-index, is defined for the
coincidence Nielsen classes, and it is no longer necessarily an integer. It is, in fact,
an element of either Z or Z,, the cyclic group of order 2. The index is an element of
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Z, for Nielsen classes called defective, and an integer for the others. It turns out that
this Nielsen coincidence theory is very suitable to estimate u(f, g). They succeed
showing that a pair of maps can be deformed to coincidence free if and only if the
Nielsen number is zero, in case the dimension of the manifold is at least three.

The validity of the converse of the Lefschetz Coincidence Theorem, which
does not hold in general, amounts to the ability of deforming f and g to /" and
g, respectively, such that the intersection between the diagonal AN of N and the
graph of f’ x g’ is empty. Equivalently, it is a question of deforming f X g into the
subspace N X N — AN. This approach to the converse of the Lefschetz theorem
was first studied by Fuller in [25]. Subsequently, Fadell in [18], Faddell and Hus-
seine in [20, 21], Dobrenko and Jezierski in [15], Gongalves in [28], Borsari and
Gongalves in [3, 4], Gongalves, Jiezierski and Wong in [30] further explored the
connection between coincidence theory and classical obstruction to deformation,
among other contributions.

In the fixed point case, for non-simply connected manifolds of dimension at
least three, Fadell and Husseini [20] computed the (only) primary obstruction to
deforming a selfmap to be fixed point free (see also [14]). This approach gave
an obstruction-theoretic proof of a classical result of Wecken stating that if the
manifold is of dimension at least three then the Nielsen number N(f) is zero iff fis
deformable to be fixed point free.

The purpose of this section is to describe the development of the coincidence
theory that was obtained with the participation of the Algebraic Topology group
of IME-USP.

We present the contributions that were made when looking at the primary
obstruction for a pair of maps f,g : K — N from a finite complex K of dimension
m into a manifold N of dimension 7, in the cases m = n and m > n, since it is well
known that for m < n, all pair of maps can be deformed to a coincidence free pair
of maps. We observe that the vanishing of the primary obstruction, in general,
is not sufficient to guarantee that the pair can be deformed to a coincidence free
pair. Accidentally this may happen and examples are given in [30, Section 5],
where a pair of maps from a torus into a nilmanifold can be deformed to coinci-
dence free if and only if the primary obstruction vanishes.

For a more systematic study of coincidence theory in positive codimension, we
would like to mention works by Hatcher and Quinn [35], Dimovski and Geoghe-
gan [17], Jezierski [38], Koschorke [42], and Dold and Gongalves [16]. We
should observe that one motivation to the study of coincidence theory between
manifolds of different dimensions comes from the fact that in [33] some questions
were posed where a coincidence problem of two maps between closed manifolds
of the same dimension was studied via another coincidence problem of maps
between manifolds of different dimensions.

The approach developed by Fadell and Husseini in [20], via obstruction theory,
indicates which kind of algebraic object the index of a Nielsen coincidence class
should be in more general settings. It turns out that for each Nielsen class, the
index is going to be an element of an abelian group which depends on the Nielsen
class. The approach via obstruction is quite suitable, in the sense that it is clear
that if the index of all Nielsen classes are zero, the maps can be deformed, up to
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the n-skeleton of K to be coincidence free, where n < ny < m and ny is the first
integer for which the cohomology group H™(K), with a certain system of coef-
ficients, is non trivial.

When extending the theory for maps from a simplicial complex K into a manifold
N one can not expect to deform the pair of maps so that the number of coincidences
is finite. Also one can no longer expect to deform the maps such that each essencial
coincidence Nielsen class has only one point, even when K has nice properties, such
as being n-dimensionally-connected, for n = dimN greater than 2. So the problem of
minimizing, in the homotopy class of the pair (f; g), the number of coincidences, in
this more general setting, even in the case when K and N have the same dimension,
requires a new approach in order to stablish a type of Nielsen coincidence theory.
This will be explored in what follows.

4.1 General geometric and algebraic properties

The results described in this section were taken from [28]. In order to keep this
paper self-contained, some of them are copied verbatim from [28].

Let f,g : K — N be a pair of maps, where K is a finite complex and N is a mani-
fold, both of dimension #.

From classical obstruction theory, see [52], and following [20], we have a coho-
mology class O"(f,g) € H'(K, Z[x]) which represents the primary obstruction
to deform (f, g) to a pair of coincidence free maps. We recall that H"(K, Z[x]) is
the nth cohomology group of K with local coefficients Z[x], where 7 = 7;(N). The
action w : 7(K) = Aut(Z[x]) is given by w(f).a = sign(f#(e))g#(e)af#(e)‘l. This
gives the abelian group Z[r] a structure of a Z[x;(K)]-module or, in short, a 7, (K)
-module.

Let R(f, g) be the set of Reidemeister classes and let

A[a] ~ ®a€[a]za’

where [a] € R(f, g). By definition of the action one can see that the subgroups A,
are invariants under this action. Let us denote by w,, : 7(K) — Aut(A,,) the action
of z;(K) on A, provided by the action w. With respect to the above actions we
have:

Proposition 4.1 [28, Proposition 2.1] The Z[r,(K)}module Z|x] is isomorphic to
the direct sum of the Z[x\(K)]—modules A, where the action is given in a natural
way by the direct sum of the actions w, @ m|(K) = Aut(A,)) and

H'(K,Z[x]) =~ GB[a]eR(ﬁg)Hn(K,A[u]).

Let F C Coin(f, g) be a Nielsen class. This class F' corresponds to a Reidemeister
class which we denote by [«].
The above result motivates the following definition.
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Definition 4.1 The index of F, denoted by i(F) is p;,,(O"(f, g)), where
Pl - H'(K, Z[z]) - H"(K,A,)

is the natural projection.
Definition 4.2 F is called essential if i(F) # 0.

Let us consider the cocycle ¢"(f, g) as defined in [20], using classical obstruc-
tion theory.

Proposition 4.2 [28, Proposition 2.2] The cocycle c''(f, g) is the sum of cocycles cE’a],
where the summand c?a] is a cocycle of H"(K, Ay, for [a] € R(f, g).

Consider the case where K is a n-manifold. We observe that if K has non-
empty boundary, then it has the homotopy type of a (n — 1)-complex. Therefore
H"(K,Z[x]) =0 and every pair (f, g) can be made coincidence free. So let us
assume that K is a manifold without boundary.

Proposition 4.3 [28, Proposition 2.5] i(F) is either an element of Z or Z,.

Theorem 4.1 [28, Theorem 2.6] For f,g : M — N where M and N are manifolds of
the same dimension, we have N(f, g) = u(f, g).

The above result, that has been proved by Schirmer [46] in the orientable case
and by Dobrenko and Jezierski [15] in the non-orientable case, not only solves
both cases at once, but also gives some insight on how to deal with complexes
more general than a manifold.

The examples that will be presented in what follows were taken from [28, sec-
tion 4] and will show that the classical Nielsen coincidence number is too weak
to estimate u(f, g). So, in order to extend the theory for maps from a more general
complex into a manifold, we constructed in [4] an algorithm, using all possible
cocycles representing the primary obstruction class, to find the number u(f, g),
which will be described in Sect. 4.3.

Example 1 Consider n disjoint copies of the sphere §” and connect them by strips of
dimension m — 1. Take a map f from the above complex into the m-sphere such that
frestricted to any one of the spheres is homotopic to the identity. Let g be the con-
stant map. Then certainly R(f, g) contains only one element and N(f, g) = 1. But it
is quite simple to see that u(f, g) = n.

Example 2 Consider n disjoint copies of the sphere S§™ and connect them, in
sequence, by points and take f and g as in Example 2. Then R(f, g) contains only one
element and N(f, g) = 1. But it is not hard to see that u(f, g) = [(n + 1)/2], where [ ]
means the greatest integer less than or equal to the number inside of the bracket.
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Example 3 Consider the bouquet of n, spheres S™and take f and g as above. This
space has the same homotopy type as the spaces given in Examples 2 and 3, R(f, g)
contains only one element and N(f, g) = 1. It is easy to see that u(f,g) = 1.

Example 4 Let K;, i = 1,2, be the two 2-cell complexes obtained from § 1 by attach-
ing a 2-cell by the maps @, : S' — S, i = 1,2, of degrees 2 and 3, respectively. (K,
is just the two-dimensional projective space.) Take

K,US'x[0,1]JUK,

~

where we identify the one skeleton S! C K; with S! X0 and S' C K, with ! x 1.
One can show that K is simply connected and has the homology of the sphere S2. So
K has the homotopy type of the 2-sphere. If we consider f,g : K — S where g is
the constant map and f has degree d (which we may assume greater than zero), we
have:

(a) If d is relatively prime with 6, then u(f, g) > 2, because the maps restricted to
i = 1,2, must have at least one coincidence point. (We believe that u(f, g) = 2.)
(b) If d is relatively prime with 2, then there exists at least one coincidence point
in K, and of course u(f, g) > 1. The cases where d is relatively prime to 3 are similar.

(c) Finally, if 6 divides d, then we believe that u(f, g) = 1 and the coincidence
point can be located anywhere in K.

K

i’

This example shows that even for a complex which has the homotopy type of
a compact manifold, the situation can be quite different from the case where the
domain is a compact manifold.

Comments Example 2 was known by R. Brooks, in [6], where the reader will
also find some material related with this work.

The examples above show how relevant the geometry of the complex K is, in
order to define a Nielsen type number to play the role of a good lower bound for
u(f, ). It also becomes clear that one should look for a Van Kampen type theorem.

4.2 Local coincidence index, the number NO(f, g; K) and the minimal number
of coincidences

The results in this section were taken from [4] and some of them were copied verba-
tim from [4].

In this section we define a homotopy invariant which coincides, under mild con-
ditions, with the minimal number of coincidences in the homotopy class of the pair
f,g : K — N", where K is a simplicial complex of dimension n and N" is a closed
n-manifold. This invariant is constructed in terms of the primary obstruction to
deform a pair of maps to coincidence free as well as in terms of the geometry of the
complex K. We will start by reviewing the notion of local index as formulated by
Fadell and Husseini in [21], adapted to the terminology of the coincidence context.
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Let U be an open set of K and (f, g) : U — N" be a pair of maps where the set of
coincidence points are compact.

As in [21], we consider the diagonal /\ in N” X N" and replace the inclu-
sion N*"XN'—/\ < N'xN' by a fiber map p:E— N'xN", where
E={(a,p) : a(0) # p(0)}, and p(a,p) = (a(l), f(1)). For b= (x,y) in N" X N"
and F,, = p~}(b), 7,,_,(F,) is a local system of coefficients on N" x N". There is an
isomorphism of local systems on N" X N"

¢ 7wy (Fp,b) = Z[x],

where 7 = 7;(N",x) and the action of # X z on Z[x]is given by

a-(o,7)= sgntm'_1 -a-T
We wil refer to this system as B.

Let the local system on U be the one induced from Bby fXxX g : U — N"XN"
and denote it by B(f X g). Consider the fiber space E(f, g) obtained by pulling
back p : E - N*"XN"over Uby f X g.

The obstruction to deform the pair (f, g) to a coincidence free pair is related to
the obstruction to extend sections of the fiber map E(f,g) — U.

Following the steps in [21] and making the usual adaptations to the coinci-
dence case, we end up with:

Definition 4.3 The coincidence index of (f,g) : U — N” is the cohomology class
i(f.g) in H!(U;B(f x g)) with the property that (f, g) can be deformed by a compact
homotopy to a coincidence free pair if and only if i(f,g) vanishes.

Consider now F an isolated set of coincidences of (f, g) and let V be an open
set of U such that F = V N coin(f, g). Consider the diagram

H'(V,V — F:B(f x g))j;H"(U, U - FB(f x g))ﬁH”(U, U — coin(f, 8):B(f X 8))

where the first arrow is the inverse of the excision isomorphism and the sec-
ond is induced by the inclusion. Recall that H(U;B(f X g)) is the inverse limit of
H"(U,U — C;B(f X g)), where the limit is taken over all compact subsets C of U.

Definition 4.4 The local coincidence index of F, denoted by i(f,g;F), is the element
in H!(U;B(f X g)) given by k*(7*)" (), where @ in H*(V,V — F;B(f X g)) corre-
sponds to the coincidence index of (f,g) : V — N™

Let us consider the group H"(K,A), the n-th simplicial cohomology group of
K with local coefficients, where A is a free abelian group and identified with the
direct sum of Z's indexed by some set J. We call a cochain ¢, € C"(K,A) elemen-
tary if ¢, is nonzero in only one n-simplex, called its support, and has value in
one summand Z of A indexed by j € J. So we can associate to each elementary
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cochain a pair (A", ), where A" is its support and j is the index of the summand
Z C A where the cochain assumes its value. Two elementary cochains are disjoint
if the pairs (A", ), (A",j') are not equal. Given an arbitrary cocycle (or cochain)
¢, € C"(K,A) we define an integer, £(c,), as follows:

The cocycle ¢, can be uniquely written as a sum of disjoint elementary cocy-
clesie.c, =c,; +¢,, +... + ¢,,, where each ¢, ; is elementary.

Definition 4.5 A cocycle is essential if it represents a nonzero cohomology class.

Definition 4.6 A partial sumc,; + ... +¢,; of the decomposition of ¢, is said to be
combinable if the intersection of the supports of all elementary summands is non-
empty and they have values in the same summand Z of A. Define #(c,) to be the
minimal number of combinable partial summands among all decompositions of c,,.

Definition 4.7 For maps f,g : K - N" the number NO(f, g; K) is defined as the
minimum of the numbers £(c,), where ¢, runs over the set of all cocycles represent-
ing the obstruction O"(f, g) € H"(K, Z[x]) to deform (f, g) to coincidence free.

Theorem 4.2 [4, Theorem 3.6] NO(f, g; K) is a homotopy invariant.

In order to state the minimizing result we need to set some notation. We will
define a decomposition of K in terms of a simplicial structure of K, although it can
be shown that it does not dependent on the choice of the simplicial structure. For
each maximal simplex A" of K, let C(A") be the smallest subcomplex which con-
tains all n-simplices A" such that there is a sequence of n-simplices starting at A”
and ending A’ so that the intersection of two consecutive ones is a (n — 1)-simplex
which faces only these two n-simplices. This defines a covering of K by homoge-
neous simplicial subcomplexes which we denote by {K, ..., K,.}. Associated to this
covering we have the subcomplex K, = |, 4 K; N K;. Observe that the points of K
are characterized by the property that they are not locally Euclidean in K.

Theorem 4.3 [4, Theorem 4.1] Let (f, g) : K = N" be a pair of maps, where K and
N" have dimension bigger than or equal to three. Assume every component of K, is
of non-zero dimension. Then the minimum number of coincidences in the homotopy
class of the pair (f, g) is given by NO(f, g; K).

Remark 4.1 In the case where some, if not all, components of K, have zero dimen-
sion, it could happen that two or more combinable partial sums have the intersection
of their supports being only one point. In this case, only one set of coincidences,
arising from the combinable partial sums, would be joint to this point. Therefore,
we would have to add to the number £(c,,) the number of elements of all, except the
biggest, combinable partial sums for which the intersection of supports is the same
single point.Then, the minimum of these numbers, as ¢, runs through all possible
cocycles representing the obstruction class, will give us the minimum number of
coincidences in the homotopy class of the pair (f, g).
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As an application of the above result, let K’ C K be any subcomplex such that the
homomorphism i* : H"(K, Z[z]) - H"(K’', Z[x]), induced by the inclusion map, is
a cohomology isomorphism with local coefficients, where 7 = 7;(N"). Observe that
if two subcomplexes have this property then their intersection does too. Hence, we
may always consider the minimal one, namely, the intersection of all subcomplexes
satisfying the above condition.

Theorem 4.4 [4, Theorem 4.3] Given f,g : K — N" then u(f,g) = u(f',g"), where
f', g are the restrictions of f, g, respectively, to K'.

Remark 4.2 1t is not an easy task to compute u(f, g) since one first need to find the
obstruction class and then apply the algorithm using the cocycles. Nevertheless, one
can estimate some upper bound for u(f, g). Certainly the number of n-dimensional
simpleces is an upper bound. But a much better upper bound can be defined when
N"is simply connected.

Let C = {Kil,...,Kl-r} be the covering of K defined above, and assume that all
components of K, have nonzero dimension.

Definition 4.8 A subset {Kl-l, ~-~’Ki5} of the covering C = {K|,....,K,} is called
admissible if the intersection K; N...NK; #@. Let £(C) be the minimal number
of admissible subsets which cover C. For the purpose of computing £(C) we can
assume, without loss of generality, that the admissible sets are maximal in the sense
that for any K; # K;,t = 1,...,r, wehave K;nK; n..NK; = @.

Proposition 4.4 [4, Theorem 5.3] Given f,g : K" — N", where N" is simply con-
nected, then u(f,g) < £(C).

In [4, Section 5] one can find examples which illustrate the above results.

4.3 Poincaré duality with local coefficients and the primary obstruction

The results of this section were taken from [30]. To keep this paper self-contained,
some of the presented results are copied verbatim from [30].

In this section we look at coincidences of a pair of maps f,g : K™ — N", where
K and N are manifolds and m > n. We would like to provide ways of computing the
primary obstruction in this more general situation. We succeed doing this when K is
a closed PL-manifold and the result resembles those where the manifolds have the
same dimension. For simplicity we will assume that K is an orientable PL-manifold.
The results hold true without the orientability hypothesis, and they are proved using
the same techniques as in the orientable case, see [29].

We will present two types of results. In the first one, we identify the primary
obstruction with a certain homology class determined by Coin(f, g). The sec-
ond one express the primary obstruction in terms of a sum of cup products of
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certain classes related to the Thom class, with local coefficients, of the fibration
(KXK,KxK\A) - K.

Let T" be a local system on a space X. Recall from [49] that A (X;I"), the chain
complex with coefficients in the local system I', is defined as the set of finite sums
Z 8,0, where 6 : A, — X is a singular chain and g, is a section of the system I'
over o. More precisely, g, subordinates to each x € A, an element g,(x) € I';(,) s0
that for any path @ : [0, 1] — A, the equality I';,(g,(@(0))) = g,(e(1)) holds.

Then the boundary homomorphismd : A (X;I') — A,_;(X:I') is given by

q

A(Y’ 8,0) = D (D (=1)(gy1p0)0)

c i=0

where o® denotes i-th face of 6 and g, the restriction of g, to this face. This gives
the homology groups with local coefficients H,(X;I).

We will often write g,,,o instead of g,o. Here g, denotes the value of the
section g, at a point x € A,. Since A, is simply connected, the value at a point
determines the section g,.We define cohomology with local coefficients H*(X;I")
in a similar way.

Let N be a closed oriented PL-manifold which from now on will be assumed to
have dimension at least three. In order to define the local system z on N X N let
us recall from (1.12) Theorem in [52, p.263] that it is enough to define a group
Ty for a point (x, y), and the action of (N X N;(x,y)) on 7z, ). We fix a point
(x,y) ENXN\ AN and we define 7z, =z, (NXN,NXN\ AN;(x,y)). Since
dimN > 3, z;(N X N;(x,y)) = 7;(N X N \ AN;(x,y)) and the last group acts on
Ty We will describe the group 7z, ) and the above action as in ([14, 20]). The
inclusion

i:(N,N\ {x},y) > (NXN,NXN\ AN;(x,y))
given by i(z) = (z,y), induces the isomorphism of homotopy groups
iy . m,(N,N\ {x},y) = 7, (N XN,N XN\ AN;(x,y))

We fix an embedding 0(’) 1 (4A,,bdA 5vy) — (N, N \ {x},y) representing the orienta-
tion of N. Let us denote 6/ = aof;, for a € z;(N;y). Then

7 (N NAAEY) = Brer, i 20,
and hence
Ty = T (N XN \ AN;(x,y)) = ©,Z0,,

where 6, = i,(6) and a ranges over the group 7;(N:y). Moreover the action of the
group

is then given by
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(o,7)00, =10

Tac—1:

In other words, 7; N X 7N is acting on 7;N by (¢, 7)oa = tac™.

We define the twisted Thom class 7, as the primary obstruction to the deforma-
tion of the identity map on N X N to a map outside AN C N X N as in [14]. We fix
a triangulation of N X N such that (n — 1)-skeleton is disjoint from the diagonal:
(N X N)"D c Nx N\ AN. We write N* to denote the pair (N X N,N X N \ AN).
Then the obstruction belongs to H"(N*;z) where the system & was defined
above (set (X,A)=(NXN,(NxN)" D) and (¥,B)=(NxXN,NxN \ AN)
in section 2 in [14]). This obstruction can be represented by the cocycle
c € C"(N XN,N X N \ AN;r) defined by

< ¢,0 >=[id(0)] = [o] € 7,(N*;6(v))

for each simplicial n-simplex. Since the simplicial and singular cohomology groups
are isomorphic, this cocycle is defined on singular simplices and the above formula
holds forany ¢ : (A,,dA,) = (N X N,N XN\ AN).

Let C(f,g) = {x € M|f(x) = g(x)} denote the coincidence set and = = x,(N*)
be the local system on N X N. Denote by x,* the local system on M induced by
(f X g)d. Then the primary obstruction to deforming f and g on the n-th skeleton
of M off the diagonal AN is given by o,(f, g) = [j(f X g)d]*(ry,) where 7, is the
twisted Thom class of N. The following generalizes a similar formula in [38] and in
[35] in the case of simple coefficients.

Theorem 4.5 [30, Theorem 3.3] The coincidence set C(f, g) determines the homology
element dual to the primary obstruction such that Do, (f-8) = [ng o) € Hyy (M%)

We now consider a pair of maps into N, where N is a compact simply-connected
manifold.Then the local system

m(x,y) = m,(N)(x,y) = 7, (N, N \ {x}3y) = Z

is trivial, and so it is the induced system z*.
A similar formula to the one in [18] for the Lefschetz coincidence class holds for
the primary obstruction.

Theorem 4.6 [30, Theorem 3.4] Let M be closed oriented PL-manifold,
dimM =m >n> 3. Let f,g : M — N be a pair of maps where N is any compact 1 —
connected manifold whose homology H,(N) is torsion free. Then

0,(f»8) = Z(=Dlf*(x) U g* ),

where y; is the Poincaré dual of x; € H*\(N) and x; is defined by the Kronecker
pairing with respect to a homogeneous basis {«a, ..., a,} for H,(N). In particular if
N = §" then

@ Springer



Sao Paulo Journal of Mathematical Sciences (2022) 16:508-538 529

0,(f,8) = &"(cg) + (=1)'f"(cgn).

We finish this section observing that the notion of minimal number of fixed
points, minimal number of roots and minimal number of coincidences, in the homot-
opy class of the maps involved, is a well defined concept when the spaces involved
are manifolds of the same dimension or some few other situations slightly more
general.

In the context of roots or coincidences of maps between two complexes where
the domain has dimension strictly bigger than the dimension of the target, or fixed
points for more general spaces like compact spaces, one no longer expects to deform
the maps involved so that the number of either roots, coincidences or fixed points
becomes finite. We present here an attempt of defining the concept of minimal set
for each of these three cases, in a very general topological context, which we hope to
be suitable mainly for the situation when the minimal number is not finite.

For topological spaces X and Y, we denote by [X, Y] the set of homotopy classes
of maps from X to Y.

Definition 4.9 For «, f € [X, Y] we say that Coin(f;,, g,) is minimal in the pair of
homotopy class (a, §) if Coin(f, g) is not a proper subset of Coin(f;, gy), for any
(f.8) € (a, p).

Definition 4.10 For a € [X, X] we say that Fix(f;) is minimal in the homotopy class
a if Fix(f) is not a proper subset of Fix(f;), for any f € a.

Denoting by Royﬂ(f) ={xeX|f(x)=y,}, we define

Definition 4.11 For a € [X, Y] a homotopy class we say that Ro, (fy) is minimal in
the homotopy class « if Ro, (f) is not a proper subset of Roy (fy), for any f € a.

There are some works where the minimal sets are considered according to these
definitions as [26, Theorem 2.5], [27, Proposition 3.2], [24] and [32]. We should
point out that all sort of simple questions, including very naive ones, relative to the
concept defined above, have not been explored yet. Notable, it is not true in general
that, in the same homotopy class of a pair of maps, two minimal sets are homeomor-
phic, see example 2.14 in [10]. Also, it is not true that when the minimal number
exists, i.e. it is finite, the cardinality of a minimal set is the minimal number, see
[31].

Appendix: G-deformation to fixed point free maps via obstruction
theory

Lucilia D. Borsari and Daciberg L. Gongalves
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In this section we present an alternative proof of Theorem 3.1 stated in Sect. 3.
Consider G a finite group and let M be an n—dimensional compact differentiable
G—manifold. Given a G—map f : M — M and a subgroup H of G, it is defined a
map f : M" — MH. 1t is easy to see that if fis equivariantly deformable to a fixed
point free map then f! is deformable to a fixed point free map, for every H < G.
One would like to know if the converse of this statement holds true. A.Vidal has
shown that when G acts semi-freely on a simply connected manifold M, with codim
MC > 3, then being able to deform f : M — M and f¢ : MS — MO to fixed point
free maps suffices to deform f equivariantly to a fixed point free one (see [50]). We
will show that Vidal’s result holds true under weaker hypothesis.

As we mentioned before, by the time this work was being written down, the
authors received a copy of E. Fadell and P. Wong’s paper (see [22]), with the main
results basically the same as ours, although proved with different techniques. The
proof that will be presented is based on obstruction theory and it seems to be inter-
esting by its own and might be useful to treat other cases.

Equivariant cohomology with local coefficients

Let M be an n—dimensional compact, differentiable manifold with boundary, oM,
where G acts freely. We may assume that M has a simplicial complex structure.

Definition 5.1 A G-local system over M is a local coefficient system w over M (in
the classical sense) together with homomorphisms

gy = wxg) = w(g.-xo),

for every g € G and x, € M, satisfying:
a) (82-81)% = 824814
and

b) 814044 = (81(D))408 14
where g,, g, € G and A1is a path in M.

It is well known that the fundamental group of the orbit space M/G is an exten-
sion of the fundamental group of M by G, i.e., there is a short exact sequence

0 — 7, (M)2>1,(M/G) — G — 0,

where p : M — M /G is the projection.

Given a G—local system over M, w, it induces a local coefficient system over M/G
as follows: for each vertex [x] € M /G, choose a vertex x, € M, with [x] = [x,], and
define w([x]) = w(x,). Given a € ;(M /G, [x]), represented by A : I - M /G, con-
sider the unique lifting 1 : I — M of A with 1(0) = x,. Then A(1) = g.x, for some
g € G. Letay : w([x]) —» w([x]) be the composite:
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w(xo)ﬁ)w(g.xo)—_>w(x0).

Since w is a local coefficient system over M, we have a well-defined map
6 : 7 (M/G,[x]) » Aut(w([x]))
given by
0(a) = ay.
Furthermore, 6 is a group homomophism; for if a; and a, belong to 7,(M /G, [x])
and are represented by paths A, and 4, respectively, let 4, e 4, be the unique lift-

ings of 4, e A, respectively with 4,(0) = 4,(0) = x,. Consider g,,g, € G such that
A,(1) = g,.xpand A,(1) = g,.x,. Then

(a))go(dy)y = @1—1081#)?(151082#)

/11_; o(g, (/1;1))#°81#°82#
(81(A31) % A71)408 140854
= (a; * ap)y.

Remark 5.1 Let p : M — M /G be the projection onto the orbit space M/G. Then the
composite

(M, )co)L*»;r1 M/G, [x()])—0>Aut(w(x()))

defines a local coefficient system over M which agrees with the original system w.

For each k—simplex ¢* of M, write, 6% =< x, x, - x, > and call x,, the leading ver-
tex of 6. Denote by C¥(M, dM;w) the set of all functions assigning to each k—simplex
o* of M an element of w(x,) and vanishing on every k—simplex of the boundary of M,
0M. Since w(x,) is an abelian group, CX(M, OM;w) has a structure of an abelian group.

Define a G—action on C¥(M, OM;w) by

(g9)(c") = (g7 po(ga™),

where go* has leading vertex gx,,.

Proposition 5.1 The subgroup of CN(M,oM;w) fixed by G is isomorphic to
CK(M /G, oM /G;w).

Proof Given @ € CX(M,0M;w)C, define g € CK(M /G, M /G;w) by 9(c") = ¢(5b),
where o is the k—simplex over G having leading vertex chosen as in the definition
of w. It is easy to see that this correspondence is an isomorphism. O

We will now describe a G-local system of coefficients that will be useful for our

purpose.
Consider a G—fibration (E, p, B) and a diagram of the type
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om L E

l Ip
s

M — B
where f'is equivariant and f] is an equivariant lifting of f|,,, to E. Assume the fiber
F of the fibration is simply connected, and that we have already lifted f relative to
OM up to the (k — 1)—skeleton of M. The obstruction to extend the lifting of f to the
k—skeleton lies in the cohomology group H*(M, 0M;w), where w denotes the local
coefficient system induced by the local coefficient system {z,_,(F)} over B, via f.

It is straightforward to see that the obstruction to extend the lifting of f equivari-
antly to the k—skeleton lies in H*(M /G, 0M/G;w), where w is the local coefficient
system over M/G, induced by w, as defined above.

We now specialize to the case that applies to fixed point theory.

Let N be an n—dimensional compact differentiable G—manifold, with n > 3. Let
M C N be a connected submanifold with boundary, where G acts freely. Consider
f ¢ M — N an equivariant map and assume f|,,, is fixed point free. We would like
to know under which conditions f can be deformed equivariantly to a fixed point free
map relative to oM.

Consider the diagram

NXN-A
1
ixf
M — NXN

where A is the diagonal in N X N and the maps i and i, are natural inclusions.

According to [20], we have over N X N a local coefficient system with groups
7,(NXN,N XN — A) = Z[x], where # = z;(N). The action of # X 7 on Z[x] is
given by

(o,7)a =sgn(o).(t * a * o,

foro, 7 € randa € Z[r].
Now, this local system induces, via i X f, a local system over M, w, where the
action of 7; (M) in z,(N X N,N X N — A) = Z[x]1is given by:

(i.(0).f(0))a =
sen(i, (o), (0) * @ % (o),

o

where ¢ € 7;(M), a € Z[z]and i,, f, are the induced maps on fundamental groups.

Proposition 5.2 The local coefficient system, w, over MIG, induced by w as above, is
given by w([x,]) = Z[x] and the action of (M /G) on Z[x]is given by:

oa = sgn()iy(f(5) * 67N * gh * 57),

fora € m(N), 0 € m,(M/G), 6 a lifting of o to M starting at x, and p representing
ainN.
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Proof Using the general definition of w given in the beginning of the section, and
following the same argument as in Theorem 3.1 of [20], the result follows. This is a
left action and it coincides with the one in [20] when G is the trivial group. O

The main results

Let G be a finite group acting smoothly on a connected, differentiable n—dimen-
sional manifold N. Let A C N be a submanifold invariant under the G—action and
consider a G—map f : (N,A) - (N, A) with f|, fixed point free.

Proposition 5.3 Suppose G acts freely on N — A. If f can be deformed to a fixed
point free map and one of the following conditions

a) codim(A,N) # landdim N # 2
by 7;(N)=0

holds, then f can be deformed equivariantly (relative to A) to a fixed point free map.
Proof Let us assume first that condition a) holds. We may also assume that
codim(A, N) # 0.

Let fi =fly_4 : N—A — A. It is easy to see that fand f} have the same Nielsen
classes and therefore the Nielsen number of f, N(f), coincides with the local Nielsen
number of f; (see [21] for local Nielsen number). Since f is deformable to a fixed
point free map, N(f) = 0 and so is N(f;, N — A). This implies, since dimN > 3, that
we can deform f relative to (N — A) — intK, where K is some compact inside N — A.
Hence, we can find an equivariant tubular neighborhood V(A) of A, so that f can be
deformed, relative to dV(A), to a fixed point free map.

Now, the obstruction to deform f equivariantly to a fixed point free map lies on

H'((N = V(A)/G.aV(A)/G:w),

where V(A) denotes the interior of V(A).
We have just shown that this obstruction belongs to the kernel of

Pt BN = VA)/G.aV(A)/Gim) — HY(N — V(A), 0V (A)w),

where p is the projection onto the orbit space. Therefore, is suffices to show that p*
is one to one. In order to do this, consider the transfer

o H'(N = V(A),0V(A):w) — H'((N — \(;(A))/G,ﬁV(A)/G;W)

which is induced by the map 7 given, at the chain level by

2(@)([o"]) = ), g a(go”).

geG

From now on the proof follows Vidal’s ideas (see [50]).
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We certainly have t*op* given by multiplication by the order of G. Hence, it suf-
fices to show that H"((N — V(A))/G, 0V(A);w) is torsion-free. By the duality theo-
rem given in Lemma 2.1 in [52], we have

H'((N = V(A))/G, 0V(A)/G:w) ~ Hy((N — V(A)/Giit),

where W' is the Z [7,((N = V(A))/G]—module structure defined in [52]. By definition
of W', the action of Z[7;((N — V(A))/Glon Z[x;(N)] is the one given in Proposition
5.2, except for the term sgn(o), i.e.,

ca=i,(f(6) * 676G * gf = &)

This action defines an equivalence relation on 7, (N), which splits 7, (N) into disjoint
equivalence classes. The quotient of the group ring Z[z;(N)] by this action is iso-
morphic to a dirgct sum of Z’s, indexed by the set of classes z;(N)/ ~.

So H'"((N — V(A))/G, dV(A)/G;w) is torsion-free and the results follows.

For the case where 7;(N) =0, we may assume codim(A,N) =1, since oth-
erwise the proof would follows the steps of the first part. From the fact that N is
simply-connected, we have w(x,) & Z. By hypothesis, the Lefchetz number’s L(f)
and L(f|,) vanish and therefore L(f,f|,) = 0. This means that the obstruction to
deform f equiyariantly maps into zero. By the same arguments as above, we have
that Hy((N — V(A))(G;Z") ~ Z and hence, torsion free, and the proof is complete.

O

Proposition 5.4 Suppose G acts on a compact differentiable manifold M with only
one orbit type, say G/H. Assume either n;(M") = 0 or dimension of M™ is bigger
than or equal to 3. Then a G—map [ : M — M can be deformed equivariantly to a
fixed point free map if and only if f% . MH — M can be deformed to a fixed point
free map.

Proof The assumption that the action has only one orbit type implies that
v GXyy M? - M, w([g,x]) = gx, is a G—isomorphism. Here NH denotes de nor-
malizer of H in G (see [5]).

Since NH/H acts freely on M, Proposition 5.3 implies that f7 can be deformed
NH /H—equivariantly to a fixed point free map. Denote by (L,),c; a NH/H—-homot-
opy which realizes this deformation.

Let @, : GXyy M? - G Xy M7 be given by ¢,([g,x]) = [g,L,(x)] and
consider the composite wog,op~! : M — M. Then it is a G-homotopy
with  wogyow~!(x) = wlg, Ly(g™'x)] = gf'(g"'x) =f(x) , where x€M and
g € G is such that G, = gHg™!. Now, if x is a fixed point of wog oy ™!, then
x=wop,(lg, g 'x]) = gL,(g”'x) which is a contradiction, since L, is fixed point
free.

Hence, yog,op~!is a G-homotopy from fto a fixed point free map and the proof
is done. O

We are now ready to prove the main result. Let us first set up some notation.
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Let G act on M and consider (H,), ---, (H,) the orbit types of the action ordered in a
way that if (#,) c () then j < i. Foreachi € {1,---,r},letM; = {x e M/(G,) = (H)).j < i}-
Then M, cM,c--cM, My =My,={xeM/(G)=H)}, M,=M and
M;—M;,_, ={xeM/(G,) =H)} =My,

Denote by C,(H) a connected component of M, for each subgroup H of G.

Theorem 5.1 Let f: M — M be a G-map such that {7 : M" — M" can be
deformed to a fixed point free map for each isotropy subgroup H of G. Assume the
action satisfies one of the following conditions:

a) dimC;(H) # 2,VH < G and whenever C,(H) C C{(K) the codimension is different
from 1.
b) C;(H)is simply-connected, Vi, VH < G.

Then f can be deformed equivariantly to a fixed point free map.
Proof We will assume condition a) holds.The proof assuming condition b) is totally
analogous.

We look at f; = f],,. Since fMis deformable to a fixed point free map and the
action on M| has only one orbit type, it follows from Proposition 5.4, that f; is equiv-
ariantly deformable to a fixed point free map. Using G—homotopy extension prop-
erty, we may assume f is fixed point free.

The proof proceeds by induction. Assuming f_; = f1y,_ is fixed point free we
must show that f; = f[,, can be equivariantly deformed (relative to M,_,) to a fixed
point free map. l

Consider f ' =fH|ym_p : M — F - M, where F=M"nM,_,, and
observe that M7 — F = {x €M : G, =H,;}. By hypothesis, codim(F, MY > 2
wh_ig,h implies that f" and f ' have the same Nielsen classes and therefore
N(f ',M" — F) = N(ffi) = 0. So fi can be deformed to a fixed point free map rel-
ative to M,_, n M. Now, fHiis a NH,/H,—map and NH,/H, acts freely on M*i — F,
hence, by Proposition 5.2.1, ffi can be deformed NH,/H;—equivariantly, relative
to M 0 M;_,, to a fixed point free map. Denote by (H,),;, the NH,/H,—~homotopy
which deforms i to fixed point free map. Define

H, : G Xyy (M",F) > G Xy, (M™, F)
by
H,([g,x]) = [g, H,X)].
Then (ﬁt),e ; is G=homotopy with

Hy(lg, x]) = [g.f™(x)]

and
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H,([g,x]) = [g, H,(x)].

Let y : Gxyy (M™% M"AM,_) > M%), MH) - M) be given by w([g,x]) = gx.
Here, M) = {x € M : (G,) D (H,)}. Observe that y is onto and one to one when
restricted to G Xy, (MH: — (M™: 0 M,_))). Define, also,

L s (M, M = My) = (MO, M = M)
by
L(x) = w(H,([g g 'x) = gH (g™ '),

where g € G is such that g~'x € M.
It is not hard to verify that L, is well-defined and G—equivariant. Also,

Ly(x) = gHy(g™'x) = gf™(87'%) = f(x) = £y (),
and
L (x) =gH, (g7'x) is fixed point free.

Hence, (L,),¢; is a G-homotopy (relative to M; n M) from f* to a fixed point
free map. _
But, M; = M) U M,_, and therefore we may define L, : M; — M, by

T = L(x), x&M®
() = Sla s X € My

Hence, (Zt),E 1 is a G=homotopy (relative to M;_;) from f; = f1, to a fixed point free
map and the theorem is proved. O
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