Link prediction based on stochastic information diffusion (2022)
- Authors:
- Autor USP: LIANG, ZHAO - FFCLRP
- Unidade: FFCLRP
- DOI: 10.1109/TNNLS.2021.3053263
- Subjects: PROBABILIDADE; DISSEMINAÇÃO SELETIVA DA INFORMAÇÃO; REDES COMPLEXAS; EDITORES DE LIGAÇÃO
- Keywords: Diffusion process; Edge additions; Graph based; Information spreading; Link prediction (LP); Network evolution
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Piscataway
- Date published: 2022
- Source:
- Título: IEEE Transactions on Neural Networks and Learning Systems
- ISSN: 2162-237X
- Volume/Número/Paginação/Ano: v. 33, n. 8, p. 3522-3532, 2022
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
VEGA-OLIVEROS, Didier Augusto et al. Link prediction based on stochastic information diffusion. IEEE Transactions on Neural Networks and Learning Systems, v. 33, n. 8, p. 3522-3532, 2022Tradução . . Disponível em: https://doi.org/10.1109/TNNLS.2021.3053263. Acesso em: 20 jan. 2026. -
APA
Vega-Oliveros, D. A., Liang, Z., Rocha, A., & Berton, L. (2022). Link prediction based on stochastic information diffusion. IEEE Transactions on Neural Networks and Learning Systems, 33( 8), 3522-3532. doi:10.1109/TNNLS.2021.3053263 -
NLM
Vega-Oliveros DA, Liang Z, Rocha A, Berton L. Link prediction based on stochastic information diffusion [Internet]. IEEE Transactions on Neural Networks and Learning Systems. 2022 ; 33( 8): 3522-3532.[citado 2026 jan. 20 ] Available from: https://doi.org/10.1109/TNNLS.2021.3053263 -
Vancouver
Vega-Oliveros DA, Liang Z, Rocha A, Berton L. Link prediction based on stochastic information diffusion [Internet]. IEEE Transactions on Neural Networks and Learning Systems. 2022 ; 33( 8): 3522-3532.[citado 2026 jan. 20 ] Available from: https://doi.org/10.1109/TNNLS.2021.3053263 - Traffic congestion on clustered random complex networks
- Pixel clustering by using complex network community detection technique
- Preventing error propagation in semi-supervised learning
- Handwritten digits recognition using a high level network-based approach
- Features of edge-centric collective dynamics in machine learning tasks
- Stochastic competitive learning in complex networks
- QK-means: a clustering technique based on community detection and 'capa'-means for deployment of custer head nodes
- Attack vulnerability of scale-free networks due to cascading breakdown
- Particle competition and cooperation in networks for semi-supervised learning
- Controlled consensus time for community detection in complex networks
Informações sobre o DOI: 10.1109/TNNLS.2021.3053263 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 003039469.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
