Preventing error propagation in semi-supervised learning (2012)
- Authors:
- Autor USP: LIANG, ZHAO - ICMC
- Unidade: ICMC
- DOI: 10.1007/978-3-642-31346-2
- Subjects: INTELIGÊNCIA ARTIFICIAL; COMPUTAÇÃO GRÁFICA; PROCESSAMENTO DE IMAGENS; SISTEMAS DINÂMICOS
- Language: Inglês
- Imprenta:
- Publisher: Springer-Verlag
- Publisher place: Berlin
- Date published: 2012
- Source:
- Título: Lecture Notes in Computer Science
- ISSN: 0302-9743
- Volume/Número/Paginação/Ano: v. 7367, p. 565-572, 2012
- Conference titles: International Symposium on Neural Networks : Advances in Neural Networks - ISNN
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
SILVA, Thiago C e LIANG, Zhao. Preventing error propagation in semi-supervised learning. Lecture Notes in Computer Science. Berlin: Springer-Verlag. Disponível em: https://doi.org/10.1007/978-3-642-31346-2. Acesso em: 12 fev. 2026. , 2012 -
APA
Silva, T. C., & Liang, Z. (2012). Preventing error propagation in semi-supervised learning. Lecture Notes in Computer Science. Berlin: Springer-Verlag. doi:10.1007/978-3-642-31346-2 -
NLM
Silva TC, Liang Z. Preventing error propagation in semi-supervised learning [Internet]. Lecture Notes in Computer Science. 2012 ; 7367 565-572.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1007/978-3-642-31346-2 -
Vancouver
Silva TC, Liang Z. Preventing error propagation in semi-supervised learning [Internet]. Lecture Notes in Computer Science. 2012 ; 7367 565-572.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1007/978-3-642-31346-2 - Semi-supervised learning with concept drift using particle dynamics applied to network intrusion detection data
- Computer-aided music composition with LSTM neural network and chaotic inspiration
- Semi-supervised learning by edge domination in complex networks
- Dimensionality reduction with the k-associated optimal graph applied to image classification
- Bias-guided random walk for network-based data classification
- A review and comparative analysis of coarsening algorithms on bipartite networks
- Semi-supervised learning from imperfect data through particle cooperation and competition
- Chaotic phase synchronization and desynchronization in an oscillator network for object selection
- Random walk in feature-sample networks for semi-supervised classification
- Classificação de alto nível baseada em entropia da rede
Informações sobre o DOI: 10.1007/978-3-642-31346-2 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas