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Abstract— Link prediction (LP) in networks aims at determin-
ing future interactions among elements; it is a critical machine-
learning tool in different domains, ranging from genomics to
social networks to marketing, especially in e-commerce rec-
ommender systems. Although many LP techniques have been
developed in the prior art, most of them consider only static
structures of the underlying networks, rarely incorporating the
network’s information flow. Exploiting the impact of dynamic
streams, such as information diffusion, is still an open research
topic for LP. Information diffusion allows nodes to receive
information beyond their social circles, which, in turn, can
influence the creation of new links. In this work, we analyze the
LP effects through two diffusion approaches, susceptible-infected-
recovered and independent cascade. As a result, we propose
the progressive-diffusion (PD) method for LP based on nodes’
propagation dynamics. The proposed model leverages a stochastic
discrete-time rumor model centered on each node’s propagation
dynamics. It presents low-memory and low-processing footprints
and is amenable to parallel and distributed processing imple-
mentation. Finally, we also introduce an evaluation metric for LP
methods considering both the information diffusion capacity and
the LP accuracy. Experimental results on a series of benchmarks
attest to the proposed method’s effectiveness compared with the
prior art in both criteria.

Index Terms— Diffusion process, edge additions, graph based,
information spreading, link prediction (LP), network evolution.
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I. INTRODUCTION

NETWORKS are powerful modeling tools for an extensive
range of real-world systems, especially for uncovering

interaction patterns among the elements or groups of elements
that the systems comprise [1]. A network (or a graph) consists
of a set of nodes and a set of links between each pair of
nodes. In this structure, a node corresponds to an element
(e.g., a person in a social network), and edges represent an
association between two elements. How to take advantage of
connections between the elements is a fundamental task in net-
work understanding to improve decision-making in different
areas, such as marketing, politics, and business. This is even
more important with the growth of social network platforms,
such as Twitter, Facebook, WhatsApp, and We-chat. How-
ever, the nodes of many networks are not i.i.d. (independent
and identically distributed), rather presenting interdependency
and complex relations among them. Such complexity behind
relational data sets brings challenges to traditional machine-
learning algorithms. Thus, different network data techniques
have been developed for different tasks, such as pattern
classification [2], natural language processing [3], forecasting,
and time-series analysis [4], among others.

Networks are also dynamically evolving structures in which
connections may appear or disappear from time to time.
In this context, link prediction (LP) aims at anticipating future
associations [5], [6] and various applications directly benefit
from such predictions, such as friendship analysis in social
networks [7], associations and monitoring of suspects in ter-
rorist networks [8], protein associations [9], recommendation
systems in e-commerce [10], and relevant future collaborations
in cooperation networks [11].

Given a network, we have access to both its local and
global structures, such as the neighborhood of a node, the dis-
tance among nodes, and the nodes’ community structure. LP
methods aim at discovering potential links with structural
influence based on a local or global view, which can lead
to different prediction results. Typically, the local metrics are
generic and straightforward, whereas global methods need
substantial processing time and often cannot handle large
and dense networks. Due to the complex structure and noise
nature of networks, it is difficult to predict future links, and
it is unlikely to develop a method that can outperform all
others [5], [6].

Modeling information diffusion in online social networks
is a challenging problem, and various researchers contributed
to this end [12]–[14]. In the LP research area, some strategies
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consider a random walk in a network, such as DeepWalk [15],
which has been proposed to search likely edges using uniform
random walks, and Node2vec [16], which explores network
neighborhoods through unbalanced random walks. In the diffu-
sion processes, Ally et al. [17] proposed two rewiring models
and compared the effects on information spreading in scale-
free and small-world networks. However, the authors did not
consider adding new edges or the effects on the networks’
structure. In [18], the authors have addressed Sina Weibo and
detected an important feature from the information diffusion
process, which promoted LP performance. Wu et al. [19]
proposed a framework called influential nodes identification
LP (INILP) to quantify the importance of a node in a network
by assigning each node a ranking score. The influence of a
node represents its ability to spread information to other nodes.
However, the proposed metrics are structural node rankings
of centrality measures, not a proper influential spreading
model, such as epidemics, rumors, or information propagation.
Recently, Wang et al. [20] proposed a neighborhood adversar-
ial LP method, but they disregarded the local influence that
the diffusion dynamics have on the link formation.

In this article, we propose a progressive-diffusion (PD)
method for LP that improves information propagation. The
method’s rationale is that the node’s local dynamics in
the early stage of an information diffusion process, i.e., the
microscopic interactions of “who influenced whom,” positively
predicts reliable new links in the network. The method lever-
ages a stochastic discrete-time rumor model centered on each
node’s propagation dynamics, in which a small number of
iterations are required. The model works on arbitrary network
structures and presents a low-processing and low-memory
footprint. The differences with respect to the prior art include
incorporating local diffusion information into the LP task and
using intermediate information of the network, being amenable
to parallel and distributed processing implementation.

We also present some contributions in terms of evaluating
LP when considering local and global properties of a network.
Existing LP methods mostly focus on classification tasks (pre-
diction accuracy of new links) [5], [6], [20]–[22]. However,
it is somewhat intuitive that new links are also directly related
to the information diffusion in the network [7], [18], [23]. For
example, users in online communication platforms not only
passively receive information but generate and disseminate
news pieces, messages, and memes. Weng et al. [7] reported
evidence of the role of information diffusion in evolving
social networks. Vega-Oliveros et al. [23] further explored
this aspect and evaluated the impact of edge additions, infor-
mation diffusion, and structural properties on the evolved
networks. In this latter study, although the authors assessed
rules that are more consistent with longitudinal structural
changes observed in a data set, they did not propose any
LP strategy neither diffusion models in their formulation.
In [21], the authors proposed a measure based on the geometric
mean of the area under the receiver operator’s characteristic
curve (AUC) for evaluating the accuracy of LP methods.
Nevertheless, the authors did not consider either the diffusion
process, network evolution, or structural characterization in
their formulation.

The spreading capacity is also a relevant metric to be con-
sidered in LP research, which is currently ignored. However,
improving the spreading capacity and link classification task
simultaneously is not a simple task. For instance, the random
inclusion of edges improves the spreading capacity, but it
has a small effect in improving classification performance,
as expected. On the other hand, some of the LP methods’
inclusion of new edges may not improve the spreading capac-
ity, which is contrary to our expectation. In practical situations,
a suitable LP method should have good performance in both
aspects: the spreading capacity and the LP classification tasks.

In summary, the main contributions of this work are
threefold.

1) We introduce an LP method that leverages the network’s
local and progressive diffusion of information over time.
The method considers the structure of the underly-
ing network (static information) and also introduces a
dynamic process into LP, incorporating both micro and
macro information in the prediction.

2) The method presents low-memory and low-processing
footprint and outperforms random-walk- and stochastic-
based strategies. Only a small number of iterations are
required in the proposed method’s prediction task. The
method also leverages intermediate information of the
network, such as quasi-local/global information, parallel,
and distributive processing.

3) We present a performance assessment methodology that
considers the spreading capacity and the classification
accuracy of LP tasks.

We performed extensive experiments with eight real-world
data sets and one synthetic benchmark and made comparisons
with different methods: common neighbors (CN), Jaccard Sim-
ilarity (JC), Adamic Adar (AA), Rooted PageRank (RP), Sim-
Rank (SR), GraphDistance (GD), DeepWalk (DW), Node2vec
(NV), and the variational graph autoencoder (VGAE).

We organized this article as follows. Section II presents
the proposed LP method and the progressive-diffusion (PD)
process. Section III discusses the adopted benchmarks and
methods in prior art used for comparisons. Section IV presents
the experimental results and the main research findings.
Finally, Section V concludes the work and entails some ideas
for future work.

II. LINK PREDICTION METHOD BASED ON

PROGRESSIVE-DIFFUSION PROCESS

We introduce a link prediction method that relies upon a
progressive discrete rumor diffusion model centered on each
node’s dynamics. The proposed rumor model is a stochastic
approach that considers the microscopic dynamics of the
diffusion and is applicable to arbitrary network structures,
different from the broadly reported macroscopic homogeneous
mean-field models [12] in the prior art. In this way, the pro-
posed model’s spreading process takes place via the contact
interaction between neighbor nodes.

As a rumor diffusion model underpins our methodology, it is
worth differentiating the spreading behavior in such models
from that in epidemic ones. In epidemic dynamics [12], each
active node uniformly selects a node at each time, and the
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Fig. 1. Graphical model. Given a network data set, some information piece is propagated to neighbors from an informed node by a discrete-time stochastic
rumor model. A probability matrix P is generated, indicating how likely node j will be informed (PD-I) or an active spreader (PD-A) at time t when the
rumor started on node i . However, matrix P is not symmetric, and a symmetrization function F should be applied. Finally, the nodes with higher similarity
in the diffusion process will be ranked to receive a new connection.

deactivation is spontaneous, whereas, in rumor’s behavior,
the activation/deactivation of nodes occurs by the interaction
with informed pairs [12], [23].

Fig. 1 shows the pipeline and idea of the proposed PD
method. We first preprocess the data set into a network
representation, where we can choose to consider the largest
component of the network and the edge’s direction, among
other features. When the data are not a graph or a relational
representation, we can transform the data set into a network by
using an appropriated graph construction method [2], [4]. With
the network at hand, we evaluate each node’s rumor diffusion
dynamics as an initial spreader by employing the proposed
stochastic discrete-time rumor model (Section II-A) for this
purpose.

As we are interested in obtaining the nodes’ influence in
the early stage of the spreading process, we do not run the
diffusion until the end of the dynamic (i.e., until reaching
the absorbing state). After the spreading, we obtain a diffu-
sion probability matrix P [see Fig. 1 (3)], which indicates
the probability of influence among the nodes at time t .
This probability matrix is not symmetric, which means that
the influence over the network that node i exerts on node
j is different from the influence that j has over i . For this
reason, we need to apply a symmetrization function F on
the matrix P . The PD method consists of a scoring function
that predicts the likelihood of potential new edges based on
nodes with highly similar influence interaction or diffusion
embedding on the network [see Fig. 1 (4)]. Section II-B
presents the details of the probability matrix and the PD
method.

The key advantages of the proposed discrete-time rumor
model include its low-computational cost and the suitability
for parallel and distributed processing; each node as initial
spreader can be treated as an independent diffusion dynamic,
as we show in Sections II-C and II-D.

A. Stochastic Discrete-Time Rumor Model

The discrete model we exploit in this work describes, for
each node, its probability of being in one of two states:
spreader or stifler, therefore enabling the system to incorporate
evolution aspects over time. Formally, given a network G =
(V , E) (see Table I), it can be represented as an adjacency

TABLE I

SYMBOLS

matrix A, where if node i is connected with j , we have
Ai j = 1 or 0 otherwise. In (1), a node i has the probability
to be a spreader at time quantum (t + 1) if either it was
already a spreader in the last step (I i (t)) and it did not become
stifler during that time (r̄i(t)) or if i was an ignorant (Si (t))
but was informed by any of its neighbors ([ 1 − īi(t) ]). The
probability of a spreader i to become inactive (2) depends
on the probability of node i being a spreader and becoming
stifler by being in contact with any of its informed neighbors
(I i(t)[ 1 − r̄i (t) ]) or if node i was already a stifler in the last
time step (Ri (t)), that is,

I i (t + 1) = I i (t)r̄i (t)+ Si(t)
�
1− īi(t)

�
(1)

Ri (t + 1) = Ri (t)+ I i (t)
�
1− r̄i (t)

�
(2)

where īi (t) and r̄i(t) are the transition probabilities of node
i to not become a spreader nor a stifler through contact with
any of its neighbors at time t , respectively. Node i does not
become a spreader if it was not convinced, with probability
γ , by any spreader neighbor j , formally 1− (A ji/k j) I j (t) γ .
The contact happens according to the number of neighbors

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on February 24,2025 at 13:38:44 UTC from IEEE Xplore.  Restrictions apply. 



VEGA-OLIVEROS et al.: LP BASED ON STOCHASTIC INFORMATION DIFFUSION 3525

(degree k j ) of node j . Because each neighbor can inde-
pendently make contact with node i , īi(t) is the product
of this probability among all neighbors of i . A susceptible
or ignorant node will become “infected” given the contact
interaction with its spreader neighbors. In turn, if the node i
is a spreader, it will become inactive depending on the contact
interaction with its informed neighbors (active or inactive
spreaders), i.e., μ (Ai j/ki)(I j(t) + R j(t)), where μ is the
contact probability of the spreader to transit to the inactive
state (Recovery). Therefore, r̄i (t) is the complement of the sum
over all neighbors of i , normalized by its degree ki . Without
loss of generality, here, we consider μ = 1 in the model.
However, we show in Section IV-C a parameter sensitivity
evaluation in the link classification task.

Given the N × 1 nodes states �S(t), �I (t), and �R(t), the i th
position on each vector represents the probability of node i to
be part of the corresponding state. We formalize our model in
an algebra notation as follows:

�I (t + 1) = �I (t)� �r(t)+ �S(t)�
�
1N×1 −�i(t)

�
(3)

�R(t + 1) = �R(t)+ �I (t)�
�
1N×1 − �r(t)

�
(4)

recalling that �S(t) = 1N×1 − [�R(t) + �I (t)]. The operator
� denotes the componentwise multiplication between two
vectors, e.g., for any vectors U N×1 and V N×1, we have U N×1�
V N×1 = [u1v1, . . . , uN vN ]N×1. We define �ϕ(t) = �R(t)+ �I (t)
as the overall probability that nodes are informed, i.e., how
likely each node knows the information at time quantum t .

The vector expression for the negative transition probabili-
ties is given by

�i(t) =
��

1N×N −
�

A(T ) · Dig
�

γ · 1
�K �
�I (t)

���
(5)

�r(t) = 1N×1 −
��

Dig
�

1
�K � �ϕ(t)

�
· A

�
· 1N×1

�
(6)

where �K is the vector of centrality measures of all the
nodes and 1/ �K its reciprocal. The function Dig(U N×1) trans-
forms vector U into a diagonal matrix N × N . The operator	

(M N×N ) denotes the vector of columns product of the given
matrix, i.e.,

�

M N×N

� =
⎡
⎣ N�

j=1

M1, j , . . . ,

N�
j=1

Ml, j , . . . ,

N�
j=1

MN, j

⎤
⎦

N×1

.

(7)

B. Progressive-Diffusion Link Prediction
With the proposed diffusion framework, we can analyze the

progression of each node’s diffusion and influence in a specific
time, given the probability matrix P(t). This matrix represents
the probability of one node influencing (or affecting in some
way) another on the network, directly or not, by the diffusion
process after t time steps. For example, the probability P(t)

i, j
indicates how likely node j will be informed when the rumor
starts on node i . We define �I (i, t) as the probability for
each node to be an active spreader at time step t when
the rumor started on node i . Similarly, the vector �ϕ(i, t)

denotes the probabilities that nodes have been informed (by
active or inactive spreaders) at time t when the rumor started
on node i . The active spreaders and informed probability
matrices P(t)(I ) and P(t)(ϕ) are defined by

P(t)(I ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

�I (1, t)T

...
�I (i, t)T

...
�I (N, t)T

⎞
⎟⎟⎟⎟⎟⎟⎠

, P(t)(ϕ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

�ϕ(1, t)T

...
�ϕ(i, t)T

...
�ϕ(N, t)T

⎞
⎟⎟⎟⎟⎟⎟⎠

(8)

in which �I (i, t) and �R(i, t) are initially column vectors (N ×
1), but we transpose them to row vectors, just for clarity.
The matrix values are related to the probability of arrival,
in connection with a random walk, or to be infected by a
specific node. The matrices P(t)(·) are not symmetric [i.e.,
P(t)

i, j (·) �= P(t)
j,i (·)] as the paths and behavior of each node are

particular for infecting others. For this reason, we consider
that nodes with similar particularities in the diffusion process
share an equivalent perspective or embedding on the network.

We consider that nodes have higher interaction with similar
pairs in the diffusion process, which shapes the structure of
the network, like the communities [24]. This point has been
previously explored [7], [18], [23]. For this reason, we con-
sider that two nodes are similar if they share higher contagion
characteristics on the network. Therefore, the generalized PD
LP score is

s P D
i, j

�
P, F

�
= F

�
P(t)

i, j (·), P(t)
j,i (·)

�
(9)

where P(t)(·) denotes the probability matrix from (8), which
leads to the proposal of two LP approaches: considering
the active spreaders PD-A and informed PD-I probability
matrices. F(·) is the symmetrization function between a pair
of nodes (i, j). Traditionally, authors consider F as the sum of
the values P(t)

i, j (·) and P(t)
j,i (·), as in random walk LP methods.

Here, we explore making the sum (s) and the mean (m) of the
probabilities as a symmetrization function in both the proposed
LP approaches.

C. Progression-Diffusion Algorithm

In Algorithm 1,1 we present the proposed generalized PD
algorithm and note its parallelism and distribute process-
ing nature, useful for larger networks. There are two main
functions for calculating the LP score matrix. The global
parameters of the algorithm are: γ , the propagation prob-
ability; NSTEPS, the maximum number of time steps for
the propagation; and F , the function for symmetrizing the
probability matrix P (Algorithm 1, line 1).

The GET-PD-SCORE is the main function that yields the
score matrix. The array rK has two columns, which are the
reciprocal of the degree distribution vector with the first col-
umn also multiplied by γ (Algorithm 1, line 5). Lines 5 and 6
can execute in a single command with just one inline for. In
Lines 7–10, we calculate each row of the initial P matrix,

1The source code of the algorithm presented in this manuscript is available
at https://github.com/didiervega/progressive-diffusion-link-prediction
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Algorithm 1 Proposed PD Algorithm
1: γ ← 0.2, μ← 1.0, nSteps ← max(�), F � global parameters
2: function GET-PROGRESSIVE-DIFFUSION-SCORE(G)
3: N ← LEN(G[:]) � the size or number of nodes
4: P ← ZEROS((N,N)) � initialize the diffusion probability matrix N × N
5: rK[:,0]← ARRAY([ γ / LEN(G[x]) for x ∈ G[:]]) � G[x] is the id-list of neighbors of node x
6: rK[:,1]← ARRAY([ μ / LEN(G[x]) for x ∈ G[:]]) � rK is a N × 2 array of reciprocal degree vector
7: for all i ∈ G[:] do � � G[:] is the list of all node ids
8: statei ← GET-PROGRESSIVE-DIFFUSION-ROW(G, i, rK, N)
9: P[i,:] ← 1.0 - statei [‘S’]

10: end for
11: A ← G.ADJMATRIX( )
12: P ← P - A - 2 * IDENTITY(N) � removing self-loops and previous edges
13: return s P D ← F(P) � the F function for symmetrization
14: end function

15: function GET-PROGRESSIVE-DIFFUSION-ROW(G, i, rK, N)
16: t1 ← 0
17: state ← INIT-ROW-STATES(N, i)
18: for all step ∈ RANGE(nSteps) do �
19: t0 ← t1 � t0 current and t1 future state
20: t1 ← t0 � 1 � xor operation
21: PA ← state[t0][‘I’] � probability of Active spreaders
22: PI ← PA + state[t0][‘R’] � probability of Informed nodes
23: negT[:,0]← ARRAY([

�
(1.0 - rK[G[x],0] * PA[G[x]]) for x ∈ G[:]]) � column 0 is the �i(t) vector

24: negT[:,1]← ARRAY([1.0 -
�

(rK[x,1] * PI [G[x]]) for x ∈ G[:]]) � column 1 is the �r(t) vector
25: state[t1][‘I’]← state[t0][‘I’] * negT[:,1] + state[t0][‘S’] * (1.0 - negT[:,0])
26: state[t1][‘R’] ← state[t0][‘R’] + state[t0][‘I’] * (1.0 - negT[:,1])
27: state[t1][‘S’] ← 1.0 - state[t1][‘I’] - state[t1][‘R’] � calculating the states of the next step t1
28: end for
29: return state[t1] � probability states at the last step
30: end function

as described in (8). The main function finishes removing
scores of self-loops and previous edges and symmetrizing P ,
at Lines 11–13. F , at line 13, can be either the sum (P +
PT ) or the mean (P/2.0+ PT /2.0) symmetrization function.
At Line 9, we take the probabilities of nodes being informed
by node i after NSTEPS (�ϕ(i, t)). However, the probabilities of
the active spreader (�I (i, t)) could also be considered. The star
symbol at Line 7 indicates a point in which the parallelization
can be achieved, with a direct parallel_for or a pool of workers.
In this way, each worker (i.e., threads or computers) can
calculate the graph’s fractions, distributing the processing load
and memory footprint.

The GET-PD-ROW function denotes the proposed diffusion
framework to calculate the rows of P (8). The algorithm’s
parameters i , the initial seed, and the global NSTEPS, γ , and
μ = 1.0 are specifically set for the LP algorithm. However,
this function can serve general purposes, like adopting a set
of initial seeds, employing heterogeneous values of γ and μ,
and running until the end of the diffusion process.

At Line 17, we initialize the system’s state with node i as a
single initial spreader. Lines 21 and 22 show the probabilities
of nodes to be active spreaders (PA) or informed (PI ) at
the current time quantum. The vector �negT denotes the two
columns array of the negative transition probabilities presented

in (5) and (6) positioning in columns 0 and 1, respectively.
Lines 23 and 24 can execute in a single command with just one
inline for. At Lines 25–27, we update the system to the next
state [see (3) and (4)], iterating until the maximum number
of NSTEPS. At Line 18, we have another point that could
be parallelized, depending on the computational requirements,
the function’s adaptation for a more general-purpose one,
i.e., running until the end of the diffusion process.

D. Complexity Analysis

In terms of computational cost, our method considers the
quasi-local/global information for each node. It is because
the method does not need to iterate until the end of the
dynamic but only needs to run a small number of steps.
As a default value, we adopt NSTEPS equal to the network’s
diameter, which is a minimal value for most of the social
networks. Given that T is equal or close to the network
diameter (we can assume a constant value of T = 15),
and the �k	 is much smaller than N , due to the power-law
degree distribution or ultrasmall world property in the case
of larger real-world networks, the computational order of the
proposed framework is � O(N2). For more details about
the complexity calculation, please consult the Supplementary
Material-I accompanying this work. As a result, our method
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TABLE II

TOPOLOGICAL PROPERTIES OF THE NETWORKS

does not need the entire network for the score calculation; it
has a low computational cost and can be easily parallelized to
distribute the processing.

III. EXPERIMENTAL SETUP

The LP methods approach the problem by ranking the
likelihood of each node pair (i, j) /∈ E to appear at a later
time. We consider the network as the last observed state at
some discrete time and include a proportion of new predicted
edges, as a future network state, for a particular LP method.
Therefore, the evolved network contains an increment of
edges concerning its original state. We evaluate the network
evolution considering fixed fractions of new recommended
edges by the LP methods.

A. Data Sets

We analyze the spreading capacity and the prediction of
new links in the evolution of the networks in nine data sets.
We adopt the Barabási–Albert (BA) [25] as a baseline syn-
thetic network model. This model is representative of network
characteristics such as scale-free degree distribution, but it
lacks important properties present in real-world networks, such
as assortativity, clustering, and the community structure [1].

We adopt eight real-world publically available network
data sets [26] (see Table II): Email [27], Hamsterster [26],
Facebook [26], Advogato [28], PGP [29], Astrophysics [30],
GooglePlus [31], and Caida [32]. In all cases, we considered
the undirected and unweighted main component for the simu-
lations. Table II summarizes the topological characteristics of
these networks. We consider the measures: number of nodes
(N), average degree (�k	), network complexity (C), second
moment of degree distribution (�k2	), average clustering coef-
ficient (CC), and the diameter (max(�)).

B. Link Prediction Methods

LP methods seek to learn a scoring function si, j : E 
→
�, which is a link similarity score matrix sN×N . Each si j

indicates the predicted likelihood of an edge between node
i and j . Then, they recommend potential new links based on
the higher scores. If the LP method produces scores based
on the network topology, it is known as a structural similarity
information approach [5]. In addition, the methods can employ
local or global structural information [5], [6].

In this work, we adopt nine methods of LP as rep-
resentative and classical approaches recommended in the

prior art [5], [33]. From local measures, we select Com-
mon Neighbors (CN), Jaccard Coefficient (JC), and Adamic
Adar (AA)Ḟrom global measures, we select the Rooted
PageRank (RP), SimRank (SR), Graph Distance (GD), Deep-
Walk (DW) [15],2 Node2vec (NV) [16],3 and the Variational
Graph Autoencoder (VGAE) method [34],4 which is a convo-
lutional graph neural network approach.

The above techniques represent the most well-known LP
methods in the area. Moreover, these methods also represent
the main strategies used in many other competing art tech-
niques, including triangle, paths, embeddings, deep convo-
lutional, or neighborhood optimization. In this way, we can
analyze the influence of different strategies to increase the
networks’ links and the relation between the prediction of links
and the diffusion capacity underlying network evolution. For
the classical LP methods, we used the Python implementation
from Networkx.5

C. Information Propagation Models

Spreading is a pervasive process in society, and several
models have been developed to understand the propagation
of ideas or information through social networks [12], [24].
The susceptible-infected-recovered (SI R) [12], [23], [35] is
the typical approach employed in epidemic spreading, where
a pathogen spreads from infected to susceptible users with a
probability β, and the recovered individuals are those infected
that spontaneously obtained immunity to the pathogen with
probability μ [12], [35]. On the other hand, for informa-
tion spreading [12], the independent cascade (IC) spreading
approach assumes the diffusion process as a cascade of acti-
vation [24], [35], i.e., the subsequent activation of informed
nodes.

We employ the S I R and IC numerical simulations for eval-
uating the increase, or decrease, of the information capacity
in the LP evolved networks. We calculate the final fraction of
informed/infected nodes at the end of the simulation for each
node as the only seed and averaging over all the vertices. For
more details on the numerical simulation setups, please consult
the Supplementary Material II accompanying this work.

IV. RESULTS AND DISCUSSION

This section presents the experiments and results for dif-
ferent LP methods regarding the performance on spreading
capacity improvement in the evolved networks and the per-
formance in the link classification tasks. This evaluation is
fundamental, given that LP methods can serve as tools for
enhancing and predicting the growth of complex networks,
e.g., in social networks by satisfying user’s connectivity pref-
erence and improving the information diffusion as the network
evolves [23]. Thus, it is relevant to understand the implications
of how the evolution of adding new edges affects the network
diffusion capacity and how suitable the LP methods are to
model network evolution.

2https://pypi.org/project/deepwalk/
3https://github.com/aditya-grover/node2vec
4https://github.com/lucashu1/link-prediction
5https://github.com/networkx
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Fig. 2. Effects on the network spreading capacity when adding new edges to the networks (5%, 10%, and 20% concerning the original number of edges). The
spreading capacities are calculated based on the numerical simulations in the IC diffusion approach. The LP methods are Adamic Adar (AA), Common Neigh-
bors (CN), DeepWalk (DW), Graph Distance (GD), Jaccard Coefficient (JC), Node2Vec (NV), Random Selection (RN), Rooted Pagerank (RP), SimRank (SR),
and Variational GAE (VGAE). There are four options for the PD: using the sum (PD-Is) or the mean (PD-Im) symmetrization in the matrix of Informed
nodes or the sum (PD-As) or the mean (PD-Am) of the matrix of Active spreaders. (a)–(d) Artificial Barabási-Albert network, Email, Facebook, and
Advogato, data sets, respectively. The results for the S I R diffusion approach are in the Supplementary Material III. (a) BA-IC. (b) Email-IC. (c) Facebook-IC.
(d) Advogato-IC.

A. Setup of Spreading Analysis

Initially, we generate evolved versions of the networks by
adding a certain percentage of new predicted edges. The
adopted percentages of new edges concerning the original
network are 5%, 10%, and 20%. The evolved versions are
produced by the following nine LP methods: Adamic Adar
(AA), Common Neighbors (CN), DeepWalk (DW), Jaccard
Coefficient (JC), Rooted PageRank (RP), SimRank (SR),
Graph Distance (GD), Node2vec (NV), Variational GAE
(VGAE), and the random addition of edges (RN). We also
explore four versions of the proposed PD method by con-
sidering: PD-Is and PD-Ia, which are the symmetrization by
the sum (s P D

i, j (P(t)(ϕ), sum)) and mean (s P D
i, j (P(t)(ϕ), mean))

of the informed probability matrix, respectively; PD-As and
PD-Am, which are the respectively symmetrization cases
(s P D

i, j (P(t)(I ), sum) and s P D
i, j (P(t)(I ), mean)) for the active-

spreaders matrix. For the PD methods, the parameter NSTEPS

is set to the network’s diameter and γ = 0.1 when the
epidemic threshold of the networks is lower or equal to 0.1,
except for the PGP data set, whose epidemic threshold is equal
to 0.21.

The spreading capacity of the network is the mean of the
final fraction of informed individuals over all the nodes (please
see the Supplementary Material II for more details). It is calcu-
lated on top of the S I R and IC MC simulations. Without loss
of generality, for the S I R numerical simulations, we adopt the
β/μ values as [0.2/0.8] and [0.4/0.8]; for the IC simulations,
we consider a global spreading probability between the nodes,
with βi j = λ = [0.1, 0.2]. We notice that the results of
the spreading capacity of the methods are consistent given

different parameter combinations. Therefore, we calculate the
spreading capacity in the original and evolved LP versions of
the network according to the fraction of new edges, diffusion
models, and parameters. After that, we analyze the features of
each LP method considering the spreading capacities among
the new networks and the different data sets. Notice that
this is an exhaustive analysis, simulating over three evolved
versions for each network from Table II times 14 LP methods,
concerning the two diffusion models and the two combinations
of diffusion parameters.

B. Results of the Spreading Analysis
Fig. 2 shows the diffusion models’ results for the BA,

Email, Facebook, Advogato, and PGP data sets. The methods’
behavior is similar in the remaining networks and the SI R
diffusion approach, which are reported in the Supplementary
Material III accompanying this article.

For the BA network, the spreading capacities have a growing
tendency as the percentage of new edges increases, which is
expected. However, such behavior is less clear for the CN and
AA methods. The increasing behavior is evident for the lowest
λ values in both diffusion models. This result indicates that the
diffusion dynamics with higher λ values reach the saturation
of spreaders, producing a similar spreading outbreak.

For the real-world data sets, AA and CN methods present
smaller improvements in the networks’ spreading capacity
when adding new edges, contrary to what we expected. This
pattern has little changes with different diffusion models, and
JC is also less prone to improve the spreading in the IC
model (see Fig. 2 and the Supplementary Material III). The
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Fig. 3. AUC classification results of the parameter evaluation considering the peak of infected (active nodes) from the PD-As matrix. The evaluation results
for the matrix of informed individuals (infected + recovered nodes) are in Supplementary Material IV. (a) Email—40% test set. (b) Email—20% test set.
(c) BA—40% test set. (d) BA—20% test set.

other LP methods present a similar increasing pattern in both
diffusion models although the reached values are different.
We note that the random method, which ignores connection
patterns between the nodes, always improves in both models
the network’s spreading capacity in the presence of new edges,
which defines the expected behavior. Similarly, the proposed
PD strategies lead to improvements in the spreading capacity,
sometimes the highest, when the network connections grow.

C. Classification Analysis

We also evaluate the LP methods by the link classification
task. We vary the test set in 20% and 40% of the total number
of edges. The percentage of links is hidden in each case, and
the LP methods need to predict them. Initially, we analyze the
proposed approaches in terms of average AUC and precision
(APR), varying the parameters γ , μ, and the number of time
steps (NSTEPS). We have the parameter sensitivity given the
proposed PD-As approach for the Email and BA networks
in Fig. 3. The AUC results are consistent with the selection of
γ and μ. Changes in μ do not show significant differences in
the AUC when fixing some γ values initially. For this reason,
and without loss of generality, we adopt μ = 1.0.

We can observe that the peak of maximum AUC is affected
by choice of γ ; the smaller γ , the more steps to reach the
peak. Thus, with a short exploration until 15-time steps and a
γ ≥ 0.6, it is possible to find the best parameter setup. We also
notice that these results are independent of the fraction of the
test set. The results for the PD-I approach are equivalent to
PD-A and reported in Supplementary Material IV.

Table III presents the AUC and APR for the nine classic and
recent LP methods (AA, RP, CN, SR, GD, JC, NV, VGAE,
and DW) and random walk baseline (RN). The VGAE was
trained with 90% of the training data and validated with 10%
of the training data. We adopted the default hyperparameters
in the codes of the methods.

We compare the prior art methods with the proposed
PD-Is and PD-As approaches to verify the possible difference
between adopting the probability matrix of informed (PD-Is)
or the matrix of active spreaders (PD-As). We carried out this
evaluation in five data sets (BA, Email, Facebook, Advogato,
and PGP), which have different topological characteristics (see
Table II for more details). Our approaches outperformed all
methods regardless of the adopted data set (bold numbers in

the table). This result highlights our methods’ potential and
suggests that the information spreading on the network is a
critical factor in the LP task.

D. Statistical Analysis

We carried out a nonparametric statistical test on the spread-
ing capacity and LP classification task of the LP methods to
check the ranking and possible significant differences among
them. We considered the Friedman–Nemenyi tests [36], group-
ing the LP methods by diffusion models, edge increasing, and
AUC performance. In all tests, we considered the statistics at
95 percentile. According to the Friedman test on the spreading
capacities in the IC, SI R simulations, and the LP classification
results, the null hypothesis that all methods behave similarly
should be rejected.

To visualize the difference among the methods, we execute
the Nemenyi post hoc test plotting a diagram in which the
critical difference (CD) is at the top. Besides, the LP methods’
average ranks are plotted, where the lowest (best) positions
are on the left side. If a set of methods have no significant
difference, i.e., mean-ranking differences are below the CD
value, a black line connects them.

For the Nemenyi post hoc test of the IC simulations, the CD
between average ranks of two different LP methods is 2.70
[see Fig. 4(a)]. For the classification results, the CD between
average ranks at the same percentile is 3.73 [see Fig. 4(b)].
More details about the Friedman and Nemenyi test and the post
hoc test for the S I R simulations are present in Supplementary
Material V.

The proposed PD methods are the best ranked in both
diffusion models (see Fig. 4 and Supplementary Material V).
In addition, PD-A strategies have significant ranking differ-
ences with the SR and RP method in the S I R, which are
another type of diffusion/random walk strategy but with a
higher computational cost. Traditional LP methods have lower
ranking positions in the spreading capacity than the random
selection of nodes. In general, CN and AA are the worst
ranked methods with significant differences. RP is the best
ranked LP within the traditional methods, even better than DW
and NV, which also employ random walks when generating
the embeddings, and VGAE, a graph convolutional network
encoder. This result contrasts with what is expected, given
that DW, NV, and VGAE are the approaches considered state
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TABLE III

RESULTS OF AVERAGE AUC AND PRECISION (APR) FOR THE EVALUATED LP METHODS

Fig. 4. Friedman–Nemenyi statistical tests of the spreading capacity and performance on predicting unseen links for the LP methods. (a) Ranking diagram
for the IC diffusion model. (b) Ranking diagram for the average AUC results. Methods with no significant difference are connected. The lower the ranking,
the more to the left in the diagram, and the better the method. The statistical test for the S I R numerical simulations is in Supplementary Material V.

of the art in LP. It is worth noting that the spreading capacity
improvement measure is introduced as an evaluation metric of
LP methods.

E. Computational Performance Analysis
We also evaluate the proposed PD method’s memory and

processing footprint concerning the network’s number of
nodes (N). For this reason, we generate artificial BA networks
with sizes N = [1× 103, 5× 103, 1× 104, 5× 104, 8× 104].
The other network’s properties are the same as the BA network
described in Table II.

We employ a dedicated machine with Ubuntu18, CPU
frequency of 2.6 GHz, four cores and eight threads, and
32 GB of RAM. In this case, we did not use GPUs. In all
the simulations, we fixed γ = 0.2, μ = 1.0, and NSTEPS

to 15 time steps, in order to reproduce the short exploration.
All the codes of the prior art methods and the proposed PD
are in Python 2.7. We optimize the PD code in memory and

TABLE IV

MEMORY AND TIME SPENT WHEN EXECUTING THE PD (PD-AS)

METHOD IN DIFFERENT NETWORK SIZES N

processing use. The source code for ALL methods will be
freely available in a public repository of the first author upon
acceptance of this work.

Table IV shows the results of memory and time spent when
running the PD-As method on each of the artificial network
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TABLE V

PERFORMANCE SUMMARY OF THE LP METHODS

sizes, grouped by a single-core or multicore execution. It is
worth noting that this computational cost is the same indepen-
dently of the selected PD option. We can also see that memory
use is not impacted when PD switch to a multicore scenario,
e.g., for a network of size N = 1× 104, the PD execution in
a single-core or multicore execution used around 391.5 MiB.
In terms of consuming time, the multicore execution is faster
than the single-core case, as expected, e.g., for the same
network of N = 1 × 104, it spent around 20 s compared
to 63 s in the single-core scenario. The higher the number of
available cores/threads for processing big networks, the faster
the parallel execution.

F. Effects of Edge Addition by the LP Methods
Table V summarizes the key results obtained in the spread-

ing analysis and classification task, along with the time com-
plexity of each LP method. We can observe the expected
behavior in the case of random inclusion of links (RN), for
which the spreading capacity grows as new links are included
(see Fig. 2). However, contrary to the expected behavior,
including recommended edges for some LP methods will not
necessarily improve the network’s spreading capacity. The
local LP methods CN, AA, and JC seem to increase the
evolved networks’ spreading capacity slightly. AA and CN are
both methods that consider the common neighbors between
pairs of nodes, i.e., equivalent to adopt the number of steps
equal to 1 in the PD method. Most of the time, RP has an
increasing pattern in the spreading capacity when adding new
edges, although it needs global information.

Improving the spreading capacity and link classification task
at the same time is not a simple task. For instance, although
RN is one of the best methods in improving the spreading
capacity, the random inclusion of edges has a lower perfor-
mance in the classification task, as expected. In particular, the
proposed PD-A strategies are in the top places in the statistical
test rankings (see Fig. 4). This is an interesting result for
traditional spreading models and random walk LP methods,
for which the works consider the final probability of informed
individuals and not the probability of being an active spreader
at some intermediate time.

PD-As and PD-Is are also the best ranked methods in the
LP classification results [see Fig. 4(b)]. In the same group
of top methods, we also have RP and SR strategies. More
importantly, these methods are the ones that improve the
diffusion capacity of the network when adding the recom-
mended links. This result provides evidence that improving
the diffusion of the network can lead to good performance

in both the spreading capacity and classification task. In this
way, the spreading capacity serves as a relevant metric to be
considered.

Concerning the computational cost of the methods, PD
considers an intermediate or quasi-local/global scale of the
network, where each node iterates until a small number of
steps, like the network’s diameter, for instances. On the other
hand, RP is a global method using a random walk strategy
over all nodes. Both methods improve the spreading capacity
by adding recommended edges. However, the PD method
achieves better spreading and link classification results and is
less time-consuming than RP. For example, notice that our PD
method spent around 23 s, whereas RP spent 500 times longer
in the Advogato network (see the comparison in Table V).
Besides, the PD is the method that requires less memory
allocation between the evaluated methods. Only the VGAE
method used all the available threads in the machine due to
the tensor-flow prerogatives during the training stage.

V. CONCLUSION

In this work, we have proposed a PD LP method capable
of improving the information diffusion in a network with a
low computational cost and practical use for real-world net-
works (quasi-local/global information, direct parallelization,
and amenable to distributed processing). We have analyzed
how the network evolution by the addition of new edges affects
information spreading. In the numerical study, we considered
a diverse set of data sets and two diffusion approaches,
the epidemic SI R and information IC models, with different
combinations of parameters. As evolutionary rules, we adopted
the recommended edges from nine prior art LP methods, based
on local and global structural information.

Through this study, we observe an impact of link recommen-
dation on the diffusion process and vice versa. For example, in
a real-world scenario, new links change the network’s structure
and, in turn, the interaction and diffusion process can change
back the connections and speed up the network evolution.
Therefore, it is relevant to evaluate the impact of LP methods
on the network’s spreading capacity. This work represents an
effort in this direction by analyzing the spreading capacity and
link classification results of some state-of-the-art methods and
proposing a new LP approach with these concerns from the
ground-up.

For some methods, the results indicate that the inclusion of
new edges on the networks may not improve the spreading
capacity, which is counterintuitive. As examples, we have
observed that CN and AA methods have little impact on the
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evolved networks’ spreading capacity. Some other classical
methods (e.g., RP, GD, and SR) tend to increase the network’s
spreading capacity when adding new links. At the same
time, these methods also obtain good performance in the LP
classification task. Such findings suggest that LP methods that
improve the network’s spreading capacity can lead to better
classification performance. In this sense, the proposed PD
method outperforms the spreading capacity of all methods
under comparison, for the adopted data sets. More specif-
ically, we have found that using the probability matrix of
active spreaders (also known as the infected state) leads to
satisfactory results with fewer iterations than the traditional
arrival/recovered probability matrix, which requires more time
steps to finish the simulation. The proposed dynamical process
and the topological network structures can provide a better
understanding of LP research.

Future work possibilities touch upon exploring informa-
tion flow transmission among heterogeneous, multigraph net-
works, or time-varying strategies. Moreover, other diffusion
models to improve transmission efficiency could also be
developed.
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