Clustered echo state networks for signal observation and frequency filtering (2020)
- Authors:
- USP affiliated authors: LIANG, ZHAO - FFCLRP ; OLIVEIRA JUNIOR, LAERCIO DE - FFCLRP
- Unidade: FFCLRP
- DOI: 10.5753/kdmile.2020.11955
- Subjects: REDES COMPLEXAS; APRENDIZADO COMPUTACIONAL; REDES NEURAIS
- Language: Inglês
- Imprenta:
- Publisher place: Porto Alegre
- Date published: 2020
- Source:
- Título: Proceedings
- Conference titles: Symposium on Knowledge Discovery, Mining and Learning - KDMiLe
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
OLIVEIRA JUNIOR, Laercio de e STELZER, Florian e LIANG, Zhao. Clustered echo state networks for signal observation and frequency filtering. 2020, Anais.. Porto Alegre: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 2020. Disponível em: https://doi.org/10.5753/kdmile.2020.11955. Acesso em: 06 fev. 2026. -
APA
Oliveira Junior, L. de, Stelzer, F., & Liang, Z. (2020). Clustered echo state networks for signal observation and frequency filtering. In Proceedings. Porto Alegre: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. doi:10.5753/kdmile.2020.11955 -
NLM
Oliveira Junior L de, Stelzer F, Liang Z. Clustered echo state networks for signal observation and frequency filtering [Internet]. Proceedings. 2020 ;[citado 2026 fev. 06 ] Available from: https://doi.org/10.5753/kdmile.2020.11955 -
Vancouver
Oliveira Junior L de, Stelzer F, Liang Z. Clustered echo state networks for signal observation and frequency filtering [Internet]. Proceedings. 2020 ;[citado 2026 fev. 06 ] Available from: https://doi.org/10.5753/kdmile.2020.11955 - Clustered Echo State networks for signal denoising and frequency filtering
- Semi-supervised learning with concept drift using particle dynamics applied to network intrusion detection data
- Computer-aided music composition with LSTM neural network and chaotic inspiration
- Semi-supervised learning by edge domination in complex networks
- Dimensionality reduction with the k-associated optimal graph applied to image classification
- Bias-guided random walk for network-based data classification
- A review and comparative analysis of coarsening algorithms on bipartite networks
- Semi-supervised learning from imperfect data through particle cooperation and competition
- Chaotic phase synchronization and desynchronization in an oscillator network for object selection
- Random walk in feature-sample networks for semi-supervised classification
Informações sobre o DOI: 10.5753/kdmile.2020.11955 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas