Investigating band gap directness using machine learning (2021)
- Authors:
- USP affiliated authors: OLIVEIRA JUNIOR, OSVALDO NOVAIS DE - IFSC ; POPOLIN NETO, MÁRIO - ICMC
- Unidades: IFSC; ICMC
- Subjects: NANOPARTÍCULAS; APRENDIZADO COMPUTACIONAL
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: American Physical Society - APS
- Publisher place: College Park
- Date published: 2021
- Source:
- Título: Bulletin of the American Physical Society
- ISSN: 0003-0503
- Volume/Número/Paginação/Ano: v. 66, n. 1, abstr. C21.00009, Mar. 2021
- Conference titles: APS March Meeting
-
ABNT
MELO, Elton Ogoshi de et al. Investigating band gap directness using machine learning. Bulletin of the American Physical Society. College Park: American Physical Society - APS. Disponível em: https://meetings.aps.org/Meeting/MAR21/Session/C21.9. Acesso em: 27 dez. 2025. , 2021 -
APA
Melo, E. O. de, Popolin Neto, M., Acosta, C. M., Nascimento, G. M., Rodrigues, J., Oliveira Junior, O. N. de, et al. (2021). Investigating band gap directness using machine learning. Bulletin of the American Physical Society. College Park: American Physical Society - APS. Recuperado de https://meetings.aps.org/Meeting/MAR21/Session/C21.9 -
NLM
Melo EO de, Popolin Neto M, Acosta CM, Nascimento GM, Rodrigues J, Oliveira Junior ON de, Longstaffe JG, Dalpian GM. Investigating band gap directness using machine learning [Internet]. Bulletin of the American Physical Society. 2021 ; 66( 1):[citado 2025 dez. 27 ] Available from: https://meetings.aps.org/Meeting/MAR21/Session/C21.9 -
Vancouver
Melo EO de, Popolin Neto M, Acosta CM, Nascimento GM, Rodrigues J, Oliveira Junior ON de, Longstaffe JG, Dalpian GM. Investigating band gap directness using machine learning [Internet]. Bulletin of the American Physical Society. 2021 ; 66( 1):[citado 2025 dez. 27 ] Available from: https://meetings.aps.org/Meeting/MAR21/Session/C21.9 - Random Forest interpretability - explaining classification models and multivariate data through logic rules visualizations
- Multidimensional calibration spaces in Staphylococcus Aureus detection using chitosan-based genosensors and electronic tongue
- Direct detection of SARS-CoV-2 antigen based on surface-enhanced Raman scattering (SERS) using machine learning
- Explainable machine learning to unveil detection mechanisms with au nanoisland-based surface-enhanced raman scattering for SARS-CoV-2 antigen detection
- Machine learning used to create a multidimensional calibration space for sensing and biosensing data
- Learning from machine learning: the case of band-gap directness in semiconductors
- Random forest similarity maps: a scalable visual representation for global and local interpretation
- Explainable matrix: visualization for global and local interpretability of random forest classification ensembles
- Microfluidic E-tongue to diagnose bovine mastitis with milk samples using machine learning with decision tree models
- Detection of Staphylococcus aureus in milk samples using impedance spectroscopy and data processing with information visualization techniques and multidimensional calibration space
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| PROD031211_3019193.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
