Explainable matrix: visualization for global and local interpretability of random forest classification ensembles (2021)
- Authors:
- USP affiliated authors: PAULOVICH, FERNANDO VIEIRA - ICMC ; POPOLIN NETO, MÁRIO - ICMC
- Unidade: ICMC
- DOI: 10.1109/TVCG.2020.3030354
- Subjects: VISUALIZAÇÃO; APRENDIZADO COMPUTACIONAL
- Keywords: Random forest visualization; logic rules visualization; classification model interpretability; explainable artificial intelligence
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Los Alamitos
- Date published: 2021
- Source:
- Título: IEEE Transactions on Visualization and Computer Graphics
- ISSN: 1077-2626
- Volume/Número/Paginação/Ano: v. 27, n. 2, p. 1427-1437, Feb. 2021
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
POPOLIN NETO, Mário e PAULOVICH, Fernando Vieira. Explainable matrix: visualization for global and local interpretability of random forest classification ensembles. IEEE Transactions on Visualization and Computer Graphics, v. 27, n. 2, p. 1427-1437, 2021Tradução . . Disponível em: https://doi.org/10.1109/TVCG.2020.3030354. Acesso em: 27 dez. 2025. -
APA
Popolin Neto, M., & Paulovich, F. V. (2021). Explainable matrix: visualization for global and local interpretability of random forest classification ensembles. IEEE Transactions on Visualization and Computer Graphics, 27( 2), 1427-1437. doi:10.1109/TVCG.2020.3030354 -
NLM
Popolin Neto M, Paulovich FV. Explainable matrix: visualization for global and local interpretability of random forest classification ensembles [Internet]. IEEE Transactions on Visualization and Computer Graphics. 2021 ; 27( 2): 1427-1437.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1109/TVCG.2020.3030354 -
Vancouver
Popolin Neto M, Paulovich FV. Explainable matrix: visualization for global and local interpretability of random forest classification ensembles [Internet]. IEEE Transactions on Visualization and Computer Graphics. 2021 ; 27( 2): 1427-1437.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1109/TVCG.2020.3030354 - Machine learning used to create a multidimensional calibration space for sensing and biosensing data
- Random Forest interpretability - explaining classification models and multivariate data through logic rules visualizations
- Microfluidic E-tongue to diagnose bovine mastitis with milk samples using machine learning with decision tree models
- Random forest similarity maps: a scalable visual representation for global and local interpretation
- Detection of Staphylococcus aureus in milk samples using impedance spectroscopy and data processing with information visualization techniques and multidimensional calibration space
- Layer-by-layer thin film of iron phthalocyanine as a simple and fast sensor for polyphenol determination in tea samples
- Skeleton-based edge bundling for graph visualization
- Contribuições em visualização de informação: projeção multidimensional
- LoCH: a neighborhood-based multidimensional projection technique for high-dimensional sparse spaces
- Using phylogenetic trees to generate semantic meaningful edge bundles
Informações sobre o DOI: 10.1109/TVCG.2020.3030354 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3049070.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
