Prediction of environmental conditions for maritime navigation using a network of sensors: a practical application of graph neural networks (2020)
- Authors:
- USP affiliated authors: TANNURI, EDUARDO AOUN - EP ; MAUÁ, DENIS DERATANI - IME ; COZMAN, FABIO GAGLIARDI - EP ; NETTO, CAIO FABRICIO DEBERALDINI - EP
- Unidades: EP; IME
- DOI: 10.5753/kdmile.2020.11981
- Subjects: REDES NEURAIS; ANÁLISE DE SÉRIES TEMPORAIS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: SBC
- Publisher place: Porto Alegre
- Date published: 2020
- Source:
- Título: Proceedings
- Conference titles: Symposium on Knowledge Discovery, Mining and Learning - KDMiLe
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
DEBERALDINI NETTO, Caio Fabrício et al. Prediction of environmental conditions for maritime navigation using a network of sensors: a practical application of graph neural networks. 2020, Anais.. Porto Alegre: SBC, 2020. Disponível em: https://doi.org/10.5753/kdmile.2020.11981. Acesso em: 15 fev. 2026. -
APA
Deberaldini Netto, C. F., Tannuri, E. A., Mauá, D. D., & Cozman, F. G. (2020). Prediction of environmental conditions for maritime navigation using a network of sensors: a practical application of graph neural networks. In Proceedings. Porto Alegre: SBC. doi:10.5753/kdmile.2020.11981 -
NLM
Deberaldini Netto CF, Tannuri EA, Mauá DD, Cozman FG. Prediction of environmental conditions for maritime navigation using a network of sensors: a practical application of graph neural networks [Internet]. Proceedings. 2020 ;[citado 2026 fev. 15 ] Available from: https://doi.org/10.5753/kdmile.2020.11981 -
Vancouver
Deberaldini Netto CF, Tannuri EA, Mauá DD, Cozman FG. Prediction of environmental conditions for maritime navigation using a network of sensors: a practical application of graph neural networks [Internet]. Proceedings. 2020 ;[citado 2026 fev. 15 ] Available from: https://doi.org/10.5753/kdmile.2020.11981 - Dealing with cycles in graph-based probabilistic models: the case of Logical Credal Networks
- Probabilistic logic programming under the L-Stable semantics
- Specifying credal sets with probabilistic answer set programming
- The complexity of inferences and explanations in probabilistic logic programming
- The descriptive complexity of bayesian network specifications
- Robustifying sum-product networks
- The complexity of Bayesian networks specified by propositional and relational languages
- The finite model theory of bayesian networks: descriptive complexity
- Bayesian networks specified using propositional and relational constructs: combined, data, and domain complexity
- Fast local search methods for solving limited memory influence diagrams
Informações sobre o DOI: 10.5753/kdmile.2020.11981 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3009849.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
