Exportar registro bibliográfico


Metrics:

Large deletions in immunoglobulin genes are associated with a sustained absence of DNA Polymerase η (2020)

  • Authors:
  • USP affiliated authors: MUNFORD, VERIDIANA - ICB ; MENCK, CARLOS FREDERICO MARTINS - ICB ; CASTRO, LIGIA PEREIRA - ICB ; VILAR, JULIANA BRANDSTETTER - ICB
  • Unidade: ICB
  • DOI: 10.1038/s41598-020-58180-7
  • Subjects: MICROBIOLOGIA; IMUNOGLOBULINAS; MUTAÇÃO GENÉTICA; DNA POLIMERASES; DANO AO DNA; LINFÓCITOS B; DOENÇAS GENÉTICAS; ANTÍGENOS
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1038/s41598-020-58180-7 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      LERNER, Leticia Koch; NGUYEN, Thuy V.; CASTRO, Ligia Pereira; et al. Large deletions in immunoglobulin genes are associated with a sustained absence of DNA Polymerase η. Scientific Reports, London, v. 10, p. 11 , 2020. Disponível em: < https://doi.org/10.1038/s41598-020-58180-7 > DOI: 10.1038/s41598-020-58180-7.
    • APA

      Lerner, L. K., Nguyen, T. V., Castro, L. P., Vilar, J. B., Munford, V., Guillou, M. L., et al. (2020). Large deletions in immunoglobulin genes are associated with a sustained absence of DNA Polymerase η. Scientific Reports, 10, 11 . doi:10.1038/s41598-020-58180-7
    • NLM

      Lerner LK, Nguyen TV, Castro LP, Vilar JB, Munford V, Guillou ML, Mohammad MM, Vergé V, Rosselli F, Menck CFM, Sarasin A, Aoufouchi S. Large deletions in immunoglobulin genes are associated with a sustained absence of DNA Polymerase η [Internet]. Scientific Reports. 2020 ; 10 11 .Available from: https://doi.org/10.1038/s41598-020-58180-7
    • Vancouver

      Lerner LK, Nguyen TV, Castro LP, Vilar JB, Munford V, Guillou ML, Mohammad MM, Vergé V, Rosselli F, Menck CFM, Sarasin A, Aoufouchi S. Large deletions in immunoglobulin genes are associated with a sustained absence of DNA Polymerase η [Internet]. Scientific Reports. 2020 ; 10 11 .Available from: https://doi.org/10.1038/s41598-020-58180-7

    Referências citadas na obra
    DiGiovanna, J. J. & Kraemer, K. H. Shining a light on xeroderma pigmentosum. J. Invest. Dermatol. 132, 785–796 (2012).
    De Weerd-Kastelein, E. A., Keijzer, W. & Bootsma, D. Genetic heterogeneity of xeroderma pigmentosum demonstrated by somatic cell hybridization. Nature. New Biol. 238, 80–83 (1972).
    de Laat, W. L., Jaspers, N. G. & Hoeijmakers, J. H. Molecular mechanism of nucleotide excision repair. Genes Dev. 13, 768–785 (1999).
    Stary, A. & Sarasin, A. Molecular mechanisms of UV-induced mutations as revealed by the study of DNA polymerase eta in human cells. Res. Microbiol. 153, 441–445 (2002).
    Opletalova, K. et al. Correlation of phenotype/genotype in a cohort of 23 xeroderma pigmentosum-variant patients reveals 12 new disease-causing POLH mutations. Hum. Mutat. 35, 117–128 (2014).
    De Palma, A. et al. Diagnosis of Xeroderma pigmentosum variant in a young patient with two novel mutations in the POLH gene. Am. J. Med. Genet. A. 173, 2511–2516 (2017).
    Johnson, R. E., Kondratick, C. M., Prakash, S. & Prakash, L. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285, 263–265 (1999).
    Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 399, 700–704 (1999).
    Biertümpfel, C. et al. Structure and mechanism of human DNA polymerase eta. Nature 465, 1044–1048 (2010).
    Waters, L. S. et al. Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol. Mol. Biol. Rev. MMBR 73, 134–54 (2009).
    Giglia-Mari, G. & Sarasin, A. TP53 mutations in human skin cancers. Hum. Mutat. 21, 217–228 (2003).
    Weill, J.-C. et al. Ig gene hypermutation: A mechanism is due. Adv Immunol. 80, 183–202 (2002).
    Longo, N. S. & Lipsky, P. E. Why do B cells mutate their immunoglobulin receptors? Trends Immunol. 27, 374–380 (2006).
    Saribasak, H. & Gearhart, P. J. Does DNA repair occur during somatic hypermutation? Semin. Immunol. 24, 287–292 (2012).
    Maul, R. W. & Gearhart, P. J. Refining the Neuberger model: Uracil processing by activated B cells. Eur J Immunol. 44, 1913–1916 (2014).
    Weill, J.-C. & Reynaud, C.-A. DNA polymerases in adaptive immunity. Nat. Rev. Immunol. 8, 302–12 (2008).
    Maul, R. W. et al. DNA polymerase ι functions in the generation of tandem mutations during somatic hypermutation of antibody genes. J. Exp. Med. 213, 1675–1683 (2016).
    Delbos, F., Aoufouchi, S., Faili, A., Weill, J.-C. & Reynaud, C.-A. DNA polymerase η is the sole contributor to A/T modifications during immunoglobulin gene hypermutation in the mouse. J. Exp. Med. 204, 17–23 (2007).
    Delbos, F. et al. Contribution of DNA polymerase η to immunoglobulin gene hypermutation in the mouse. J. Exp. Med. 201, 1191–1196 (2005).
    Reynaud, C.-A. et al. Competitive repair pathways in immunoglobulin gene hypermutation. Philos. Trans. R. Soc. B Biol. Sci. 364, 613–619 (2009).
    Zeng, X. et al. DNA polymerase eta is an A-T mutator in somatic hypermutation of immunoglobulin variable genes. Nat. Immunol. 2, 537–41 (2001).
    Faili, A. et al. A backup role of DNA polymerase κ in Ig gene hypermutation only takes place in the complete absence of DNA polymerase η J. Immunol. 182, 6353–6359 (2009).
    Munford, V. et al. A genetic cluster of patients with variant xeroderma pigmentosum with two different founder mutations. Br. J. Dermatol. 176, 1270–1278 (2017).
    Bergoglio, V. et al. DNA synthesis by Pol η promotes fragile site stability by preventing under-replicated DNA in mitosis. J. Cell Biol. 201, 395–408 (2013).
    Rey, L. et al. Human DNA polymerase eta is required for common fragile site stability during unperturbed DNA replication. Mol. Cell. Biol. 29, 3344–3354 (2009).
    McIlwraith, M. J. et al. Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol. Cell 20, 783–792 (2005).
    Kreisel, K. et al. DNA polymerase η contributes to genome-wide lagging strand synthesis. Nucleic Acids Res. 47, 2425–2435 (2019).
    Faili, A. et al. DNA Polymerase η Is Involved in Hypermutation Occurring during Immunoglobulin Class Switch Recombination. J. Exp. Med. 199, 265–270 (2004).
    Supek, F. & Lehner, B. Clustered Mutation Signatures Reveal that Error-Prone DNA Repair Targets Mutations to Active Genes. Cell 170, 534–547.e23 (2017).
    Chaudhary, N. & Wesemann, D. R. Analyzing Immunoglobulin Repertoires. Front. Immunol. 9, 462 (2018).
    McHeyzer-Williams, L. J., Milpied, P. J., Okitsu, S. L. & McHeyzer-Williams, M. G. Class-switched memory B cells remodel BCRs within secondary germinal centers. Nat. Immunol. 16, 296–305 (2015).
    Seifert, M. et al. Functional capacities of human IgM memory B cells in early inflammatory responses and secondary germinal center reactions. Proc. Natl. Acad. Sci. USA 112 (2015).
    Bende, R. J. et al. Germinal centers in human lymph nodes contain reactivated memory B cells. J. Exp. Med. 204, 2655–2665 (2007).
    Yoshida, T. et al. Memory B and memory plasma cells. Immunol. Rev. 237, 117–139 (2010).
    Crotty, S. et al. Cutting edge: long-term B cell memory in humans after smallpox vaccination. J. Immunol. Baltim. Md 1950 171, 4969–4973 (2003).
    Yu, X. et al. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature 455, 532–536 (2008).
    Yousefzadeh, M. J. et al. Mechanism of suppression of chromosomal instability by DNA polymerase POLQ. PLoS Genet. 10, e1004654 (2014).
    Chan, S. H., Yu, A. M. & McVey, M. Dual roles for DNA polymerase theta in alternative end-joining repair of double-strand breaks in Drosophila. PLoS Genet. 6, e1001005 (2010).
    Schimmel, J., Kool, H., Schendel, Rvan & Tijsterman, M. Mutational signatures of non‐homologous and polymerase theta‐mediated end‐joining in embryonic stem cells. EMBO J. 36, 3634–3649 (2017).
    Yoon, J.-H. et al. Error-Prone Replication through UV Lesions by DNA Polymerase θ Protects against Skin Cancers. Cell 33, 282–287 (2019).
    Weller, S. et al. CD40-CD40L independent Ig gene hypermutation suggests a second B cell diversification pathway in humans. Proc. Natl. Acad. Sci. USA 98, 1166–1170 (2001).
    Weller, S. et al. Somatic diversification in the absence of antigen-driven responses is the hallmark of the IgM+ IgD+ CD27+ B cell repertoire in infants. J. Exp. Med. 205, 1331–1342 (2008).
    Maccarthy, T., Roa, S., Scharff, M. D. & Bergman, A. SHMTool: a webserver for comparative analysis of somatic hypermutation datasets. DNA Repair 8, 137–41 (2009).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021