Algorithms to compute the burrows-wheeler similarity distribution (2019)
- Authors:
- USP affiliated authors: LIANG, ZHAO - FFCLRP ; LOUZA, FELIPE ALVES DA - FFCLRP
- Unidade: FFCLRP
- DOI: 10.1016/j.tcs.2019.03.012
- Subjects: ALGORITMOS; COMPUTABILIDADE E COMPLEXIDADE
- Keywords: Burrows-wheeler transform; String similarity; String collections; Compressed data structures; Parallel algorithms
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Theoretical Computer Science
- ISSN: 0304-3975
- Volume/Número/Paginação/Ano: v. 782, p. 145-156, 2019
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
LOUZA, Felipe Alves da et al. Algorithms to compute the burrows-wheeler similarity distribution. Theoretical Computer Science, v. 782, p. 145-156, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.tcs.2019.03.012. Acesso em: 12 fev. 2026. -
APA
Louza, F. A. da, Telles, G. P., Gog, S., & Liang, Z. (2019). Algorithms to compute the burrows-wheeler similarity distribution. Theoretical Computer Science, 782, 145-156. doi:10.1016/j.tcs.2019.03.012 -
NLM
Louza FA da, Telles GP, Gog S, Liang Z. Algorithms to compute the burrows-wheeler similarity distribution [Internet]. Theoretical Computer Science. 2019 ; 782 145-156.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1016/j.tcs.2019.03.012 -
Vancouver
Louza FA da, Telles GP, Gog S, Liang Z. Algorithms to compute the burrows-wheeler similarity distribution [Internet]. Theoretical Computer Science. 2019 ; 782 145-156.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1016/j.tcs.2019.03.012 - Um algoritmo para a construção de vetores de sufixo generalizados em memória externa
- Semi-supervised learning with concept drift using particle dynamics applied to network intrusion detection data
- Computer-aided music composition with LSTM neural network and chaotic inspiration
- Semi-supervised learning by edge domination in complex networks
- Dimensionality reduction with the k-associated optimal graph applied to image classification
- Bias-guided random walk for network-based data classification
- A review and comparative analysis of coarsening algorithms on bipartite networks
- Semi-supervised learning from imperfect data through particle cooperation and competition
- Chaotic phase synchronization and desynchronization in an oscillator network for object selection
- Random walk in feature-sample networks for semi-supervised classification
Informações sobre o DOI: 10.1016/j.tcs.2019.03.012 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 002980020.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
