Machine learning detects pan-cancer ras pathway activation in the cancer genome atlas (2018)
- Authors:
- USP affiliated authors: NOUSHMEHR, HOUTAN - FMRP ; CARLOTTI JUNIOR, CARLOS GILBERTO - FMRP ; SANTOS, JOSÉ SEBASTIÃO DOS - FMRP ; KEMP, RAFAEL - FMRP ; SANKARANKUTTY, AJITH KUMAR - FMRP ; TIRAPELLI, DANIELA PRETTI DA CUNHA - FMRP
- Unidade: FMRP
- DOI: 10.1016/j.celrep.2018.03.046
- Subjects: NEOPLASIAS; GENÔMICA; APRENDIZADO COMPUTACIONAL; EXPRESSÃO GÊNICA
- Keywords: Gene expression; HRAS; KRAS; NF1; NRAS; Ras; TCGA; Drug sensitivity; Machine learning; Pan-cancer
- Language: Inglês
- Imprenta:
- Source:
- Título: Cell Reports
- ISSN: 2211-1247
- Volume/Número/Paginação/Ano: v. 23, n. 1, p. 172-180, 2018
- Este periódico é de acesso aberto
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: gold
- Licença: cc-by
-
ABNT
NOUSHMEHR, Houtan et al. Machine learning detects pan-cancer ras pathway activation in the cancer genome atlas. Cell Reports, v. 23, n. 1, p. 172-180, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.celrep.2018.03.046. Acesso em: 29 dez. 2025. -
APA
Noushmehr, H., Carlotti Júnior, C. G., Santos, J. S. dos, Kemp, R., Sankarankutty, A. K., & Tirapelli, D. P. da C. (2018). Machine learning detects pan-cancer ras pathway activation in the cancer genome atlas. Cell Reports, 23( 1), 172-180. doi:10.1016/j.celrep.2018.03.046 -
NLM
Noushmehr H, Carlotti Júnior CG, Santos JS dos, Kemp R, Sankarankutty AK, Tirapelli DP da C. Machine learning detects pan-cancer ras pathway activation in the cancer genome atlas [Internet]. Cell Reports. 2018 ; 23( 1): 172-180.[citado 2025 dez. 29 ] Available from: https://doi.org/10.1016/j.celrep.2018.03.046 -
Vancouver
Noushmehr H, Carlotti Júnior CG, Santos JS dos, Kemp R, Sankarankutty AK, Tirapelli DP da C. Machine learning detects pan-cancer ras pathway activation in the cancer genome atlas [Internet]. Cell Reports. 2018 ; 23( 1): 172-180.[citado 2025 dez. 29 ] Available from: https://doi.org/10.1016/j.celrep.2018.03.046 - Molecular characterization and clinical relevance of metabolic expression subtypes in human cancers
- Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images
- An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics
- Pathogenic germline variants in 10,389 adult cancers
- Comprehensive analysis of alternative splicing across tumors from 8,705 patients
- Scalable open science approach for mutation calling of tumor exomes using multiple genomic pipelines
- Oncogenic signaling pathways in the cancer genome atlas
- Machine learning identifies stemness features associated with oncogenic dedifferentiation
- Comprehensive characterization of cancer driver genes and mutations
- The immune landscape of cancer
Informações sobre o DOI: 10.1016/j.celrep.2018.03.046 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 002938459.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas