Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images (2018)
- Authors:
- Saltz, Joel
- Gupta, Rajarsi
- Hou, Le
- Kurc, Tahsin
- Singh, Pankaj
- Nguyen, Vu
- Samaras, Dimitris
- Shroyer, Kenneth R.
- Zhao, Tianhao
- Batiste, Rebecca
- Van Arnam, John
- Shmulevich, Ilya
- Rao, Arvind
- Lazar, Alexander J.
- Sharma, Ashish
- Thorsson, Vésteinn
- Noushmehr, Houtan
- Carlotti Júnior, Carlos Gilberto
- Santos, José Sebastião dos
- Kemp, Rafael
- Sankarankuty, Ajith Kumar
- Tirapelli, Daniela Pretti da Cunha
- USP affiliated authors: NOUSHMEHR, HOUTAN - FMRP ; CARLOTTI JUNIOR, CARLOS GILBERTO - FMRP ; SANTOS, JOSÉ SEBASTIÃO DOS - FMRP ; KEMP, RAFAEL - FMRP ; SANKARANKUTTY, AJITH KUMAR - FMRP ; TIRAPELLI, DANIELA PRETTI DA CUNHA - FMRP
- Unidade: FMRP
- DOI: 10.1016/j.celrep.2018.03.086
- Subjects: NEOPLASIAS; APRENDIZADO COMPUTACIONAL; INTELIGÊNCIA ARTIFICIAL; BIOINFORMÁTICA; LINFÓCITOS
- Keywords: Digital pathology; Immuno-oncology; Machine learning; Lymphocytes; Tumor microenvironment; Deep learning; Tumor-infiltrating lymphocytes; Artificial intelligence; Bioinformatics; Computer vision
- Language: Inglês
- Imprenta:
- Source:
- Título: Cell Reports
- ISSN: 2211-1247
- Volume/Número/Paginação/Ano: v. 23, n. 1, p. 181-193, 2018
- Este periódico é de acesso aberto
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: gold
- Licença: cc-by-nc-nd
-
ABNT
SALTZ, Joel et al. Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Reports, v. 23, n. 1, p. 181-193, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.celrep.2018.03.086. Acesso em: 29 dez. 2025. -
APA
Saltz, J., Gupta, R., Hou, L., Kurc, T., Singh, P., Nguyen, V., et al. (2018). Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Reports, 23( 1), 181-193. doi:10.1016/j.celrep.2018.03.086 -
NLM
Saltz J, Gupta R, Hou L, Kurc T, Singh P, Nguyen V, Samaras D, Shroyer KR, Zhao T, Batiste R, Van Arnam J, Shmulevich I, Rao A, Lazar AJ, Sharma A, Thorsson V, Noushmehr H, Carlotti Júnior CG, Santos JS dos, Kemp R, Sankarankuty AK, Tirapelli DP da C. Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images [Internet]. Cell Reports. 2018 ; 23( 1): 181-193.[citado 2025 dez. 29 ] Available from: https://doi.org/10.1016/j.celrep.2018.03.086 -
Vancouver
Saltz J, Gupta R, Hou L, Kurc T, Singh P, Nguyen V, Samaras D, Shroyer KR, Zhao T, Batiste R, Van Arnam J, Shmulevich I, Rao A, Lazar AJ, Sharma A, Thorsson V, Noushmehr H, Carlotti Júnior CG, Santos JS dos, Kemp R, Sankarankuty AK, Tirapelli DP da C. Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images [Internet]. Cell Reports. 2018 ; 23( 1): 181-193.[citado 2025 dez. 29 ] Available from: https://doi.org/10.1016/j.celrep.2018.03.086 - Molecular characterization and clinical relevance of metabolic expression subtypes in human cancers
- Machine learning detects pan-cancer ras pathway activation in the cancer genome atlas
- An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics
- Pathogenic germline variants in 10,389 adult cancers
- Integrated genomic characterization of oesophageal carcinoma
- Driver fusions and their implications in the development and treatment of human cancers
- Genomic, pathway petwork, and immunologic features distinguishing squamous carcinomas
- Genomic and molecular landscape of DNA damage repair deficiency across the cancer genome atlas
- Systematic analysis of splice-site-creating mutations in cancer
- Comprehensive analysis of alternative splicing across tumors from 8,705 patients
Informações sobre o DOI: 10.1016/j.celrep.2018.03.086 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 002938421.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas