An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics (2018)
- Authors:
- USP affiliated authors: NOUSHMEHR, HOUTAN - FMRP ; CARLOTTI JUNIOR, CARLOS GILBERTO - FMRP ; SANTOS, JOSÉ SEBASTIÃO DOS - FMRP ; KEMP, RAFAEL - FMRP ; SANKARANKUTTY, AJITH KUMAR - FMRP ; TIRAPELLI, DANIELA PRETTI DA CUNHA - FMRP
- Unidade: FMRP
- DOI: 10.1016/j.cell.2018.02.052
- Subjects: NEOPLASIAS; GENÔMICA; TAXA DE SOBREVIVÊNCIA
- Keywords: Cox proportional hazards regression model; TCGA; The Cancer Genome Atlas; Clinical data resource; Cisease-free interval; Disease-specific survival; Follow-up time; Overall survival; Progression-free interval; Translational research
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: hybrid
- Licença: cc-by-nc-nd
-
ABNT
LIU, Jianfang et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell, v. 173, n. 2, p. 400-416.e1-e6, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.cell.2018.02.052. Acesso em: 30 dez. 2025. -
APA
Liu, J., Noushmehr, H., Carlotti Júnior, C. G., Santos, J. S. dos, Kemp, R., Sankarankutty, A. K., & Tirapelli, D. P. da C. (2018). An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell, 173( 2), 400-416.e1-e6. doi:10.1016/j.cell.2018.02.052 -
NLM
Liu J, Noushmehr H, Carlotti Júnior CG, Santos JS dos, Kemp R, Sankarankutty AK, Tirapelli DP da C. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics [Internet]. Cell. 2018 ; 173( 2): 400-416.e1-e6.[citado 2025 dez. 30 ] Available from: https://doi.org/10.1016/j.cell.2018.02.052 -
Vancouver
Liu J, Noushmehr H, Carlotti Júnior CG, Santos JS dos, Kemp R, Sankarankutty AK, Tirapelli DP da C. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics [Internet]. Cell. 2018 ; 173( 2): 400-416.e1-e6.[citado 2025 dez. 30 ] Available from: https://doi.org/10.1016/j.cell.2018.02.052 - Molecular characterization and clinical relevance of metabolic expression subtypes in human cancers
- Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images
- Machine learning detects pan-cancer ras pathway activation in the cancer genome atlas
- Pathogenic germline variants in 10,389 adult cancers
- Comprehensive analysis of alternative splicing across tumors from 8,705 patients
- Scalable open science approach for mutation calling of tumor exomes using multiple genomic pipelines
- Oncogenic signaling pathways in the cancer genome atlas
- Comprehensive molecular characterization of the hippo signaling pathway in cancer
- Somatic mutational landscape of splicing factor genes and their functional consequences across 33 cancer types
- The immune landscape of cancer
Informações sobre o DOI: 10.1016/j.cell.2018.02.052 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 002937538.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas