Evaluation of statistical and machine learning models for time series prediction: identifying the state-of-the-art and the best conditions for the use of each model (2019)
- Authors:
- Autor USP: BATISTA, GUSTAVO ENRIQUE DE ALMEIDA PRADO ALVES - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.ins.2019.01.076
- Subjects: APRENDIZADO COMPUTACIONAL; ANÁLISE DE SÉRIES TEMPORAIS; MINERAÇÃO DE DADOS
- Keywords: Univariate analysis; Automatic parameter tuning; Multi-step-ahead prediction; Time series forecasting
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Information Sciences
- ISSN: 0020-0255
- Volume/Número/Paginação/Ano: v. 484, p. 302-337, May 2019
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
PARMEZAN, Antonio Rafael Sabino e SOUZA, Vinícius M. A e BATISTA, Gustavo Enrique de Almeida Prado Alves. Evaluation of statistical and machine learning models for time series prediction: identifying the state-of-the-art and the best conditions for the use of each model. Information Sciences, v. 484, p. 302-337, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.ins.2019.01.076. Acesso em: 28 dez. 2025. -
APA
Parmezan, A. R. S., Souza, V. M. A., & Batista, G. E. de A. P. A. (2019). Evaluation of statistical and machine learning models for time series prediction: identifying the state-of-the-art and the best conditions for the use of each model. Information Sciences, 484, 302-337. doi:10.1016/j.ins.2019.01.076 -
NLM
Parmezan ARS, Souza VMA, Batista GE de APA. Evaluation of statistical and machine learning models for time series prediction: identifying the state-of-the-art and the best conditions for the use of each model [Internet]. Information Sciences. 2019 ; 484 302-337.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1016/j.ins.2019.01.076 -
Vancouver
Parmezan ARS, Souza VMA, Batista GE de APA. Evaluation of statistical and machine learning models for time series prediction: identifying the state-of-the-art and the best conditions for the use of each model [Internet]. Information Sciences. 2019 ; 484 302-337.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1016/j.ins.2019.01.076 - Contribuições em mineração de dados temporais e classes desbalanceadas
- Classification of live moths combining texture, color and shape primitives
- A complexity-invariant distance measure for time series
- Mineração de séries temporais por meio da extração de características e da identificação de motifs
- Extração de padrões e construção de modelos simbólicos para previsão de dados temporais
- Towards automatic classification on flying insects using inexpensive sensors
- Distância invariante à complexidade baseada em dimensão fractal para classificação de séries temporais
- A novel approximation to dynamic time warping allows anytime clustering of massive time series datasets
- Data mining a trillion time series subsequences under dynamic time warping
- An empirical comparison of dissimilarity measures for time series classification
Informações sobre o DOI: 10.1016/j.ins.2019.01.076 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas