On the need of class ratio insensitive drift tests for data streams (2018)
- Authors:
- Autor USP: BATISTA, GUSTAVO ENRIQUE DE ALMEIDA PRADO ALVES - ICMC
- Unidade: ICMC
- Subjects: APRENDIZADO COMPUTACIONAL; ANÁLISE DE SÉRIES TEMPORAIS; RECONHECIMENTO DE PADRÕES
- Keywords: Class imbalance; concept drift; quantification
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: Microtome Publishing
- Publisher place: Brookline
- Date published: 2018
- Source:
- Título: Proceedings of Machine Learning Research : PMLR
- ISSN: 1938-7228
- Volume/Número/Paginação/Ano: v. 94, p. 110-124, 2018
- Conference titles: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Database - ECML PKDD
-
ABNT
MALETZKE, André Gustavo et al. On the need of class ratio insensitive drift tests for data streams. Proceedings of Machine Learning Research : PMLR. Brookline: Microtome Publishing. Disponível em: http://proceedings.mlr.press/v94/maletzke18a.html. Acesso em: 03 jan. 2026. , 2018 -
APA
Maletzke, A. G., Reis, D. dos, Cherman, E. A., & Batista, G. E. de A. P. A. (2018). On the need of class ratio insensitive drift tests for data streams. Proceedings of Machine Learning Research : PMLR. Brookline: Microtome Publishing. Recuperado de http://proceedings.mlr.press/v94/maletzke18a.html -
NLM
Maletzke AG, Reis D dos, Cherman EA, Batista GE de APA. On the need of class ratio insensitive drift tests for data streams [Internet]. Proceedings of Machine Learning Research : PMLR. 2018 ; 94 110-124.[citado 2026 jan. 03 ] Available from: http://proceedings.mlr.press/v94/maletzke18a.html -
Vancouver
Maletzke AG, Reis D dos, Cherman EA, Batista GE de APA. On the need of class ratio insensitive drift tests for data streams [Internet]. Proceedings of Machine Learning Research : PMLR. 2018 ; 94 110-124.[citado 2026 jan. 03 ] Available from: http://proceedings.mlr.press/v94/maletzke18a.html - Contribuições em mineração de dados temporais e classes desbalanceadas
- Classification of live moths combining texture, color and shape primitives
- A complexity-invariant distance measure for time series
- Mineração de séries temporais por meio da extração de características e da identificação de motifs
- Extração de padrões e construção de modelos simbólicos para previsão de dados temporais
- Towards automatic classification on flying insects using inexpensive sensors
- Distância invariante à complexidade baseada em dimensão fractal para classificação de séries temporais
- A novel approximation to dynamic time warping allows anytime clustering of massive time series datasets
- Data mining a trillion time series subsequences under dynamic time warping
- An empirical comparison of dissimilarity measures for time series classification
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas