Exportar registro bibliográfico


Metrics:

An analysis and evaluation of the WeFold collaborative for protein structure prediction and its pipelines in CASP11 and CASP12 (2018)

  • Authors:
  • USP affiliated authors: DELBEM, ALEXANDRE CLÁUDIO BOTAZZO - ICMC
  • Unidades: ICMC
  • DOI: 10.1038/s41598-018-26812-8
  • Subjects: SISTEMAS EMBUTIDOS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Online source accessDOI
    Informações sobre o DOI: 10.1038/s41598-018-26812-8 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      KHOURY, George A; LIWO, Adam; KHATIB, Firas; et al. An analysis and evaluation of the WeFold collaborative for protein structure prediction and its pipelines in CASP11 and CASP12. Scientific Reports, Basel, Springer Nature Publishing AG, v. 8, n. 9939, p. 1850-1868, 2018. Disponível em: < https://doi.org/10.1038/s41598-018-26812-8 > DOI: 10.1038/s41598-018-26812-8.
    • APA

      Khoury, G. A., Liwo, A., Khatib, F., Zhou, H., Chopra, G., Bacardit, J., et al. (2018). An analysis and evaluation of the WeFold collaborative for protein structure prediction and its pipelines in CASP11 and CASP12. Scientific Reports, 8( 9939), 1850-1868. doi:10.1038/s41598-018-26812-8
    • NLM

      Khoury GA, Liwo A, Khatib F, Zhou H, Chopra G, Bacardit J, Bortot LO, Faccioli RA, Deng X, He Y, Krupa P, Li J, Mozolewska MA, Sieradzan AK, Smadbeck J, Wirecki T, Cooper S, Flatten J, Xu K, Baker D, Cheng J, Delbem ACB, Floudas CA, Keasar C, Levitt M, Popovic Z, Scheraga HA, Zhou H, Crivelli SN. An analysis and evaluation of the WeFold collaborative for protein structure prediction and its pipelines in CASP11 and CASP12 [Internet]. Scientific Reports. 2018 ; 8( 9939): 1850-1868.Available from: https://doi.org/10.1038/s41598-018-26812-8
    • Vancouver

      Khoury GA, Liwo A, Khatib F, Zhou H, Chopra G, Bacardit J, Bortot LO, Faccioli RA, Deng X, He Y, Krupa P, Li J, Mozolewska MA, Sieradzan AK, Smadbeck J, Wirecki T, Cooper S, Flatten J, Xu K, Baker D, Cheng J, Delbem ACB, Floudas CA, Keasar C, Levitt M, Popovic Z, Scheraga HA, Zhou H, Crivelli SN. An analysis and evaluation of the WeFold collaborative for protein structure prediction and its pipelines in CASP11 and CASP12 [Internet]. Scientific Reports. 2018 ; 8( 9939): 1850-1868.Available from: https://doi.org/10.1038/s41598-018-26812-8

    Referências citadas na obra
    The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169, http://www.uniprot.org (2017).
    Berman, H. M. et al. The Protein Data Bank Nucleic Acids Research 28, 235–242, http://www.rcsb.org (2000).
    Moult, J., Pedersen, J. T., Judson, R. & Fidelis, K. A large-scale experiment to assess protein structure prediction methods. Proteins: Struct, Funct, Bioinf 23(3), ii–iv (1995).
    Moult, J. A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr Opin Struct Biol 15(3), 285–289 (2005).
    Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T. & Tramontano, A. Critical assessment of methods of protein structure prediction (CASP)–round x. Proteins 82(Suppl 2), 1–6, https://doi.org/10.1002/prot.24452 (2014).
    Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T. & Tramontano, A. Critical assessment of methods of protein structure prediction: Progress and new directions in round XI. Proteins 84(Suppl 1), 4–14 (2016).
    Khoury, G. et al. WeFold: A coopetition for protein structure prediction. Proteins: Structure, Function, and Bioinformatics 82(9), 1850–1868 (2014).
    Crivelli, S., Dooley, R., Holmes, R. & Mock, S. The WeFold Gateway: Enabling Large-Scale Coopetition. 2013 IEEE International Conference on Cluster Computing (CLUSTER) 1(3), 23–27 (2013).
    Crivelli, S., Dooley, R., Holmes, R. & Mock, S., The WeFold Community. Creating a Gateway that Enables Large-Scale Science Coopetition. Concurrency and Computation: Practice and Experience 27(2), 446–457, https://doi.org/10.1002/cpe.3270 (2015).
    Mirzaei, S., Sidi, T., Keasar, C. & Crivelli, S, Purely Structural Protein Scoring Functions Using Support Vector Machine and Ensemble Learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics Volume: PP Issue, 99, https://doi.org/10.1109/TCBB.2016.2602269 (2016).
    Corcoran, T., Zamora-Resendiz, R., Liu, X. & Crivelli, S. A Spatial Mapping Algorithm with Applications in Deep Learning-Based Structure Classification, https://arxiv.org/pdf/1802.02532.pdf (2017).
    Khatib, F. et al. Crystal structure of a monomeric retroviral protease solved by protein folding game players. Nat Struct Mol Biol 18(10), 1175–1177 (2011).
    Zhang, Y. Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10. Proteins 82(Suppl 2), 175–187 (2014).
    Liwo, A. et al. Simulation of protein structure and dynamics with the coarse-grained UNRES force field. In: Coarse-Graining of Condensed Phase and Biomolecular Systems, eds Voth, G. Taylor & Francis, Chapter 8, pp. 107–122 (2008).
    Kamisetty, H., Ovchinnikov, S. & Baker, D. Assessing the utility of coevolution-based residue-residue contact predictions in a sequence- and structure-rich era. Proc. Natl. Acad. Sci. USA 110, 16674–16679 (2013).
    Bacardit, J. et al. Contact map prediction using a large-scale ensemble of rule sets and the fusion of multiple predicted structural features. Bioinformatics 28(19), 2441–2448, https://doi.org/10.1093/bioinformatics/bts472 (2012).
    Kieslich, C. A., Smadbeck, J., Khoury, G. A. & Floudas, C. A. conSSert: Consensus SVM models for accurate prediction of ordered secondary structure. J. Chem. Inf. Modeling 56, 455–461 (2015).
    Murtagh, F. Multidimensional clustering algorithms. Compstat Lect Vienna Phys Verlag (1985).
    Khoury, G. A. et al. Princeton_TIGRESS: ProTeIn Geometry REfinement using Simulations and Support vector machines. Proteins: Structure, Function, Bioinformatics (2014).
    Chopra et al. Consistent refinement of submitted models at CASP using a knowledge-based potential. Proteins 78(12), 2668–78 (2010).
    Heo, L., Park, H. & Seok, C. GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic acids research 41(Web Server issue), W384–388 (2013).
    Lee, G. R, Heo, L. & Seok, C. Effective protein model structure refinement by loop modeling and overall relaxation, Proteins, in press, https://doi.org/10.1002/prot.24858 .
    Bhattacharya, D. & Cheng, J. 3D refine: Consistent protein structure refinement by optimizing hydrogen bonding network and atomic-level energy minimization. Proteins: Structure, Function, and Bioinformatics 81(1), 119–131 (2013).
    Bhattacharyya, Moitrayee, Ghosh, Soma & Vishveshwara, Saraswathi Protein Structure and Function: Looking through the Network of Side-Chain Interactions. Current Protein and Peptide Science 17(1), 4–25 (2016).
    Wang, Z., Eickholt, J. & Cheng, J. APOLLO: a quality assessment service for single and multiple protein models. Bioinformatics 27(12), 1715–1716 (2011).
    McGuffin, L. J. The ModFOLD Server for the Quality Assessment of Protein Structural Models. Bioinformatics 24, 586–587 (2008).
    Ray, A., Lindahl, E. & Wallner, B. Improved model quality assessment using ProQ2. BMC bioinformatics 13(1), 1 (2012).
    Faraggi, E. & Kloczkowski, A. A global machine learning based scoring function for protein structure prediction. Proteins: Structure, Function, and Bioinformatics 82(5), 752–759 (2014).
    Söding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Research 33(Web Server issue), W244–W248, https://doi.org/10.1093/nar/gki40 (2005).
    Fidelis, K., Kryshtafovych, A. & Monastyrskyy, B. University of California, Davis. The CASP Prediction Center, 2007–2018, http://predictioncenter.org .
    Song, Y. et al. High-resolution comparative modeling with RosettaCM. Structure, 21(10), 1735–1742 (2013).
    Bradley, P., Misura, K. M. & Baker, D. Toward high-resolution de novo structure prediction for small proteins. Science 309, 1868–1871, PMID:16166519, https://doi.org/10.1126/science.1113801 (2005).
    Maghrabi, A. H. A. & McGuffin, L. J. ModFOLD6: an accurate web server for the global and local quality estimation of 3D models of proteins. Nucleic Acids Research. https://doi.org/10.1093/nar/gkx332 (2017).
    Zhang, J. et al. A multilayer evaluation approach for protein structure prediction and model quality assessment. Proteins: Structure, Function, and Bioinformatics 79(S10), 172–184 (2011).
    MATLAB 8.0 and Statistics Toolbox 8.1, The MathWorks, Inc, https://www.mathworks.com/help/stats/ (Natick, Massachusetts, United States, 2018).
    Zhou, H. & Skolnick, J. GOAP: a generalized orientation-dependent, all-atom statistical potential for protein structure prediction. Biophysical journal 101(8), 2043–2052 (2011).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020