Multi-objective phylogenetic algorithm: solving multi-objective decomposable deceptive problems (2011)
- Authors:
- Autor USP: DELBEM, ALEXANDRE CLÁUDIO BOTAZZO - ICMC
- Unidade: ICMC
- DOI: 10.1007/978-3-642-19893-9_20
- Assunto: ALGORITMOS GENÉTICOS
- Language: Inglês
- Imprenta:
- Publisher: Springer
- Publisher place: Heidelberg
- Date published: 2011
- Source:
- Título: Lecture Notes in Computer Sciences
- ISSN: 0302-9743
- Volume/Número/Paginação/Ano: v. 6576, p. 285-297, 2011
- Conference titles: International Conference Evolutionary Multi-Criterion Optimization - EMO 2011
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MARTINS, Jean Paulo et al. Multi-objective phylogenetic algorithm: solving multi-objective decomposable deceptive problems. Lecture Notes in Computer Sciences. Heidelberg: Springer. Disponível em: https://doi.org/10.1007/978-3-642-19893-9_20. Acesso em: 21 jan. 2026. , 2011 -
APA
Martins, J. P., Soares, A. H. M., Vargas, D. V., & Delbem, A. C. B. (2011). Multi-objective phylogenetic algorithm: solving multi-objective decomposable deceptive problems. Lecture Notes in Computer Sciences. Heidelberg: Springer. doi:10.1007/978-3-642-19893-9_20 -
NLM
Martins JP, Soares AHM, Vargas DV, Delbem ACB. Multi-objective phylogenetic algorithm: solving multi-objective decomposable deceptive problems [Internet]. Lecture Notes in Computer Sciences. 2011 ; 6576 285-297.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/978-3-642-19893-9_20 -
Vancouver
Martins JP, Soares AHM, Vargas DV, Delbem ACB. Multi-objective phylogenetic algorithm: solving multi-objective decomposable deceptive problems [Internet]. Lecture Notes in Computer Sciences. 2011 ; 6576 285-297.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1007/978-3-642-19893-9_20 - Multi-criterion phylogenetic inference using evolutionary algorithms
- A feasibility cachaca type recognition using computer vision and pattern recognition
- Parallel regressions for variable selection using GPU
- Parallel multi-objective approaches for inferring phylogenies
- A comparison of linkage-learning-based genetic algorithms in multidimensional knapsack problems
- The influence of linkage-learning in the linkage-tree GA when solving multidimensional knapsack problems
- Algoritmos evolutivos e modelo hp para predição de estruturas de proteínas
- The node-depth encoding: analysis and application to the bounded-diameter minimum spanning
- Optimization based on phylogram analysis
- Representations for evolutionary algorithms applied to protein structure prediction problem using HP model
Informações sobre o DOI: 10.1007/978-3-642-19893-9_20 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
