Speeding up parameter and rule learning for acyclic probabilistic logic programs (2019)
- Authors:
- USP affiliated authors: BONA, GLAUBER DE - EP ; MAUÁ, DENIS DERATANI - IME ; COZMAN, FABIO GAGLIARDI - EP
- Unidades: EP; IME
- DOI: 10.1016/j.ijar.2018.12.012
- Subjects: PROGRAMAÇÃO LÓGICA; APRENDIZADO COMPUTACIONAL
- Keywords: Probabilistic logic programming; Expectation-Maximization algorithm; Rule learning
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: International Journal of Approximate Reasoning
- ISSN: 0888-613X
- Volume/Número/Paginação/Ano: v. 106, p. 32-50, 2019
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: bronze
- Licença: publisher-specific-oa
-
ABNT
FARIA, Francisco Henrique Otte Vieira de et al. Speeding up parameter and rule learning for acyclic probabilistic logic programs. International Journal of Approximate Reasoning, v. 106, p. 32-50, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.ijar.2018.12.012. Acesso em: 04 jan. 2026. -
APA
Faria, F. H. O. V. de, Gusmão, A. C., De Bona, G., Mauá, D. D., & Cozman, F. G. (2019). Speeding up parameter and rule learning for acyclic probabilistic logic programs. International Journal of Approximate Reasoning, 106, 32-50. doi:10.1016/j.ijar.2018.12.012 -
NLM
Faria FHOV de, Gusmão AC, De Bona G, Mauá DD, Cozman FG. Speeding up parameter and rule learning for acyclic probabilistic logic programs [Internet]. International Journal of Approximate Reasoning. 2019 ; 106 32-50.[citado 2026 jan. 04 ] Available from: https://doi.org/10.1016/j.ijar.2018.12.012 -
Vancouver
Faria FHOV de, Gusmão AC, De Bona G, Mauá DD, Cozman FG. Speeding up parameter and rule learning for acyclic probabilistic logic programs [Internet]. International Journal of Approximate Reasoning. 2019 ; 106 32-50.[citado 2026 jan. 04 ] Available from: https://doi.org/10.1016/j.ijar.2018.12.012 - Parameter learning in ProbLog with probabilistic rules
- Fast local search methods for solving limited memory influence diagrams
- The complexity of inferences and explanations in probabilistic logic programming
- The finite model theory of bayesian networks: descriptive complexity
- A tractable class of model counting problems
- DL-Lite Bayesian networks: a tractable probabilistic graphical model
- On the semantics and complexity of probabilistic logic programs
- Credal sum-product networks
- The joy of probabilistic answer set programming: semantics, complexity, expressivity, inference
- On the complexity of propositional and relational credal networks
Informações sobre o DOI: 10.1016/j.ijar.2018.12.012 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2925554.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
