Case recommender: a flexible and extensible Python framework for recommender systems (2018)
- Authors:
- USP affiliated authors: MANZATO, MARCELO GARCIA - ICMC ; CAMPELLO, RICARDO JOSÉ GABRIELLI BARRETO - ICMC
- Unidade: ICMC
- DOI: 10.1145/3240323.3241611
- Subjects: SISTEMAS DE INFORMAÇÃO; RECONHECIMENTO DE PADRÕES; PYTHON
- Keywords: Recommender Systems; Framework
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Proceedings
- Conference titles: ACM Conference on Recommender Systems - RecSys
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
COSTA, Arthur da et al. Case recommender: a flexible and extensible Python framework for recommender systems. 2018, Anais.. New York: ACM, 2018. Disponível em: https://doi.org/10.1145/3240323.3241611. Acesso em: 20 fev. 2026. -
APA
Costa, A. da, Fressato, E., Neto, F., Manzato, M. G., & Campello, R. J. G. B. (2018). Case recommender: a flexible and extensible Python framework for recommender systems. In Proceedings. New York: ACM. doi:10.1145/3240323.3241611 -
NLM
Costa A da, Fressato E, Neto F, Manzato MG, Campello RJGB. Case recommender: a flexible and extensible Python framework for recommender systems [Internet]. Proceedings. 2018 ;[citado 2026 fev. 20 ] Available from: https://doi.org/10.1145/3240323.3241611 -
Vancouver
Costa A da, Fressato E, Neto F, Manzato MG, Campello RJGB. Case recommender: a flexible and extensible Python framework for recommender systems [Internet]. Proceedings. 2018 ;[citado 2026 fev. 20 ] Available from: https://doi.org/10.1145/3240323.3241611 - CoRec: a co-training approach for recommender systems
- Exploiting different users' interactions for profiles enrichment in recommender systems
- Ensemble clustering approaches applied in group-based collaborative filtering supported by multiple users' feedback
- Boosting collaborative filtering with an ensemble of co-trained recommenders
- Group-based collaborative filtering supported by multiple users' feedback to improve personalized ranking
- Similarity measures for comparing biclusterings
- Density-based clustering validation
- Relative validity criteria for community mining algorithms
- Active learning strategies for semi-supervised DBSCAN
- On the evaluation of outlier detection and one-class classification methods
Informações sobre o DOI: 10.1145/3240323.3241611 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
