Exportar registro bibliográfico


Metrics:

A Chrysoporthe cubensis enzyme cocktail produced from a low-cost carbon source with high biomass hydrolysis efficiency (2017)

  • Authors:
  • USP affiliated authors: MILAGRES, ADRIANE MARIA FERREIRA - EEL
  • Unidades: EEL
  • DOI: 10.1038/s41598-017-04262-y
  • Subjects: ETANOL; LIGNINA; BAGAÇOS; CANA-DE-AÇÚCAR; ENZIMAS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Online source accessDOI
    Informações sobre o DOI: 10.1038/s41598-017-04262-y (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      DUTRA, Thiago Rodrigues; GUIMARÃES, Valéria Monteze; VARELA, Ednilson Mascarenhas; et al. A Chrysoporthe cubensis enzyme cocktail produced from a low-cost carbon source with high biomass hydrolysis efficiency. Scientific Reports, London, UK, v. 7, n. 1, 2017. Disponível em: < http://dx.doi.org/10.1038/s41598-017-04262-y > DOI: 10.1038/s41598-017-04262-y.
    • APA

      Dutra, T. R., Guimarães, V. M., Varela, E. M., Fialho, L. da S., Milagres, A. M. F., Falkoski, D. L., et al. (2017). A Chrysoporthe cubensis enzyme cocktail produced from a low-cost carbon source with high biomass hydrolysis efficiency. Scientific Reports, 7( 1). doi:10.1038/s41598-017-04262-y
    • NLM

      Dutra TR, Guimarães VM, Varela EM, Fialho L da S, Milagres AMF, Falkoski DL, Zanuncio JC, Rezende ST de. A Chrysoporthe cubensis enzyme cocktail produced from a low-cost carbon source with high biomass hydrolysis efficiency [Internet]. Scientific Reports. 2017 ;7( 1):Available from: http://dx.doi.org/10.1038/s41598-017-04262-y
    • Vancouver

      Dutra TR, Guimarães VM, Varela EM, Fialho L da S, Milagres AMF, Falkoski DL, Zanuncio JC, Rezende ST de. A Chrysoporthe cubensis enzyme cocktail produced from a low-cost carbon source with high biomass hydrolysis efficiency [Internet]. Scientific Reports. 2017 ;7( 1):Available from: http://dx.doi.org/10.1038/s41598-017-04262-y

    Referências citadas na obra
    Falter, C. et al. Glucanocellulosic ethanol: the undiscovered biofuel potential in energy crops and marine biomass. Sci Rep 5, 13722, doi: 10.1038/srep13722 (2015).
    Hu, L., Lin, L., Wu, Z., Zhou, S. & Liu, S. Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts. Appl Catal, B 174–175, 225–243 (2015).
    Falkoski, D. L. et al. Chrysoporthe cubensis: A new source of cellulases and hemicellulases to application in biomass saccharification processes. Bioresour Technol 130, 296–305 (2013).
    Kim, I. J., Lee, H. J., Choi, I. & Kim, K. H. Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase. Appl Microbiol Biotechnol 98, 8469–8480 (2014).
    Visser, E. M., Leal, T. F., de Almeida, M. N. & Guimarães, V. M. Increased enzymatic hydrolysis of sugarcane bagasse from enzyme recycling. Biotechnol Biofuels 8, 5 (2015).
    Mäkelä, M. R., Donofrio, N. & de Vries, R. P. Plant biomass degradation by fungi. Fungal Genet Biol 72, 2–9 (2014).
    Visser, E. M., Falkoski, D. L., de Almeida, M. N., Maitan-Alfenas, G. P. & Guimarães, V. M. Production and application of an enzyme blend from Chrysoporthe cubensis and Penicillium pinophilum with potential for hydrolysis of sugarcane bagasse. Bioresour Technol 144, 587–594 (2013).
    Liao, H. et al. Functional diversity and properties of multiple xylanases from Penicillium oxalicum GZ-2. Sci Rep 5, 12631 (2015).
    Santos, V. E. N., Ely, R. N., Szklo, A. S. & Magrini, A. Chemicals, electricity and fuels from biorefineries processing Brazil’s sugarcane bagasse: Production recipes and minimum selling prices. Renew Sustain Energy Rev 53, 1443–1458 (2016).
    Chandel, A. K., da Silva, S. S., Carvalho, W. & Singh, O. V. Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. Fungal Genet Biol 87, 11–20 (2012).
    de Almeida, M. N. et al. Cellulases and hemicellulases from endophytic Acremonium species and its application on sugarcane bagasse hydrolysis. Appl Biochem Biotechnol 165, 594–610 (2011).
    Liao, H. et al. Functional diversity and properties of multiple xylanases from Penicillium oxalicum GZ-2. Sci Rep 5, 12631 (2015).
    Maitan-Alfenas, G. P. et al. The influence of pretreatment methods on saccharification of sugarcane bagasse by an enzyme extract from Chrysoporthe cubensis and commercial cocktails: A comparative study. Bioresour Technol 192, 670–676 (2015).
    Zhao, X., Peng, F., Cheng, K. & Liu, D. Enhancement of the enzymatic digestibility of sugarcane bagasse by alkali–peracetic acid pretreatment. Enzyme Microb Technol 44, 17–23 (2009).
    de Vries, R. P. & Visser, J. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65, 497–522 (2001).
    Aro, N., Saloheimo, A., Ilmén, M. & Penttila, M. ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J Biol Chem 276, 24309–24314 (2001).
    Brunner, K., Lichtenauer, A. M., Kratochwill, K., Delic, M. & Mach, R. L. Xyr1 regulates xylanase but not cellulase formation in the head blight fungus Fusarium graminearum. Curr Genet 52, 213–220 (2007).
    Tani, S., Kawaguchi, T. & Kobayashi, T. Complex regulation of hydrolytic enzyme genes for cellulosic biomass degradation in filamentous fungi. Appl Microbiol Biotechnol 98, 4829–4837 (2014).
    Lichius, A., Seidl-Seiboth, V., Seiboth, B. & Kubicek, C. P. Nucleo-cytoplasmic shuttling dynamics of the transcriptional regulators XYR1 and CRE1 under conditions of cellulase and xylanase gene expression in Trichoderma reesei. Mol Microbiol 94, 1162–1178 (2014).
    Alvira, P., Tomás-Pejó, E., Ballesteros, M. & Negro, M. J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour Technol 101, 4851–4861 (2010).
    van den Brink, J. et al. Synergistic effect of Aspergillus niger and Trichoderma reesei enzyme sets on the saccharification of wheat straw and sugarcane bagasse. Biotechnol J 9, 1329–38 (2014).
    Mach-Aigner, A. R., Pucher, M. E. & Mach, R. L. D-Xylose as a repressor or inducer of xylanase expression in Hypocrea jecorina (Trichoderma reesei). Appl Environ Microbiol 76, 1770–1776 (2010).
    Castro, L. S. et al. Expression pattern of cellulolytic and xylanolytic genes regulated by transcriptional factors XYR1 and CRE1 are affected by carbon source in Trichoderma reesei. Gene Expr Patterns 14, 88–95 (2014).
    Masui, D. C. et al. Production of a xylose-stimulated β-glucosidase and a cellulase-free thermostable xylanase by the thermophilic fungus Humicola brevisvar thermoidea under solid state fermentation. World J Microbiol Biotechnol 28, 2689–2701 (2012).
    Znameroski, E. A. et al. Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins. PNAS 109, 6012–6017 (2012).
    Marx, I. J. et al. Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse. Biotechnol Biofuels 6, 172 (2013).
    Pereira, B. M. P. et al. Cellulase on-site production from sugar cane bagasse using Penicillium echinulatum. Bioenergy Res 6, 1052–1062 (2013).
    Sun, Q. X., Liu, Z., Zheng, K., Song, X. & Qu, Y. The composition of basal and induced cellulase systems in Penicillium decumbens under induction or repression conditions. Enzyme Microb Technol 42, 560–567 (2008).
    Ko, C.-H. et al. Xylanase production by Paenibacillus campinasensis BL11 and its pretreatment of hardwood kraft pulp bleaching. Int Biodeterior Biodegradation 64, 13–19 (2010).
    Kaur, A., Mahajan, R., Singh, A., Garg, G. & Sharma, J. Application of cellulase-free xylano-pectinolytic enzymes from the same bacterial isolate in biobleaching of kraft pulp. Bioresour Technol 101, 9150–9155 (2010).
    Nagar, S., Jain, R. K., Thakur, V. V. & Gupta, V. K. Biobleaching application of cellulase poor and alkali stable xylanase from Bacillus pumilus SV-85S. 3 Biotech 3, 277–285 (2013).
    Sachslehner, A., Nidetzky, B., Kulbe, K. D. & Haltrich, D. Induction of mannanase, xylanase, and endoglucanase activities in Sclerotium rolfsii. Appl Environ Microbiol 64, 594–600 (1998).
    Ravanal, M. C., Rosa, L. & Eyzaguirre, J. α-L-Arabinofuranosidase 3 from Penicillium purpurogenum (ABF3): Potential application in the enhancement of wine flavour and heterologous expression of the enzyme. Food Chem 134, 888–893 (2012).
    Gonçalves, T. A. Functional characterization and synergic action of fungal xylanase and arabinofuranosidase for production of xylooligosaccharides. Bioresour Technol 119, 293–299 (2012).
    Yoon, L. W., Ang, T. N., Ngoh, G. C. & Chua, A. S. M. Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biomass Bioenergy 67, 319–338 (2014).
    Elisashvili, V. et al. Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition. Bioresour Technol 99, 457–462 (2008).
    Khare, S. K., Pandey, A. & Larroche, C. Current perspectives in enzymatic saccharification of lignocellulosic biomass. Biochem Eng J 102, 38–44 (2015).
    Li, J. et al. Synergism of cellulase, xylanase, and pectinase on hydrolyzing sugarcane bagasse resulting from different pretreatment technologies. Bioresour Technol 155, 258–265 (2014).
    van den Brink, J. & de Vries, R. P. Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91, 1477–1492 (2011).
    Zimbardi, A. L. R. L. et al. Optimization of β-Glucosidase, β-Xylosidase and Xylanase production by Colletotrichum graminicola under solid-state fermentation and application in raw sugarcane trash saccharification. Int. J Mol Sci 14, 2875–2902 (2013).
    TAPPI. Technical Association of the Pulp and Paper Industry. Tappi Standard Methods (T-222 om-98), Atlanta. 14 (1999).
    TAPPI. Technical Association of the Pulp and Paper Industry Tappi Useful Methods (UM-250), Norcross (1991).
    Ghose, T. K. Measurement of cellulose activities. Pure Appl Chem 59, 257–268 (1987).
    Miller, G. L. Use of dinitrosalicycilic acid reagent for determination of reducing sugars. Anal Chem 31, 426–430 (1959).
    Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248–254 (1976).
    Tuyen, V. D., Cone, J. W., Baars, J. J. P., Sonnenberg, A. S. M. & Hendriks, W. H. Fungal strain and incubation period affect chemical composition and nutrient availability of wheat straw for rumen fermentation. Bioresour Technol 111, 336–342 (2012).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020