A continuous spatio-temporal model for house prices in the USA (2017)
- Autor:
- Autor USP: LAURINI, MARCIO POLETTI - FEARP
- Unidade: FEARP
- DOI: 10.1007/s00168-016-0801-6
- Subjects: MERCADO IMOBILIÁRIO; PREÇOS; INFERÊNCIA BAYESIANA
- Language: Inglês
- Imprenta:
- Source:
- Título: Annals of Regional Science
- ISSN: 0570-1864
- Volume/Número/Paginação/Ano: v. 58, p. 235-269, 2017
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
LAURINI, Marcio Poletti. A continuous spatio-temporal model for house prices in the USA. Annals of Regional Science, v. 58, p. 235-269, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00168-016-0801-6. Acesso em: 14 fev. 2026. -
APA
Laurini, M. P. (2017). A continuous spatio-temporal model for house prices in the USA. Annals of Regional Science, 58, 235-269. doi:10.1007/s00168-016-0801-6 -
NLM
Laurini MP. A continuous spatio-temporal model for house prices in the USA [Internet]. Annals of Regional Science. 2017 ; 58 235-269.[citado 2026 fev. 14 ] Available from: https://doi.org/10.1007/s00168-016-0801-6 -
Vancouver
Laurini MP. A continuous spatio-temporal model for house prices in the USA [Internet]. Annals of Regional Science. 2017 ; 58 235-269.[citado 2026 fev. 14 ] Available from: https://doi.org/10.1007/s00168-016-0801-6 - Data cloning: maximum likelihood estimation of DSGE models
- A spatial error model with continuous random effects and an application to growth convergence
- The spatio-temporal dynamics of ethanol/gasoline price ratio in Brazil
- Dynamic functional data analysis with non-parametric state space models
- Spillovers and jumps in global markets: A comparative analysis
- A dynamic econometric model for inflationary inertia in Brazil
- A noisy principal component analysis for forward rate curves
- A hybrid data cloning maximum likelihood estimator for stochastic volatility models
- A macro-finance term structure model with multivariate stochastic volatility
- Poverty elasticity: a note on a new empirical approach
Informações sobre o DOI: 10.1007/s00168-016-0801-6 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
