Plankton image classification based on multiple segmentations (2017)
- Authors:
- USP affiliated authors: HIRATA, NINA SUMIKO TOMITA - IME ; LOPES, RUBENS MENDES - IO
- Unidades: IME; IO
- DOI: 10.1109/CVAUI.2016.022
- Subjects: COMPUTAÇÃO APLICADA; ALGORITMOS PARA IMAGENS
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Piscataway
- Date published: 2017
- Source:
- Título: Proceedings
- Conference titles: Workshop on Computer Vision for Analysis of Underwater Imagery (CVAUI)
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
HIRATA, Nina Sumiko Tomita e FERNÁNDEZ, Mariela e LOPES, Rubens Mendes. Plankton image classification based on multiple segmentations. 2017, Anais.. Piscataway: IEEE, 2017. Disponível em: https://doi.org/10.1109/CVAUI.2016.022. Acesso em: 13 fev. 2026. -
APA
Hirata, N. S. T., Fernández, M., & Lopes, R. M. (2017). Plankton image classification based on multiple segmentations. In Proceedings. Piscataway: IEEE. doi:10.1109/CVAUI.2016.022 -
NLM
Hirata NST, Fernández M, Lopes RM. Plankton image classification based on multiple segmentations [Internet]. Proceedings. 2017 ;[citado 2026 fev. 13 ] Available from: https://doi.org/10.1109/CVAUI.2016.022 -
Vancouver
Hirata NST, Fernández M, Lopes RM. Plankton image classification based on multiple segmentations [Internet]. Proceedings. 2017 ;[citado 2026 fev. 13 ] Available from: https://doi.org/10.1109/CVAUI.2016.022 - Image segmentation assessment from the perspective of a higher level task
- Evaluation of transfer learning scenarios in plankton image classification
- A model for simulating user interaction in hierarchical segmentation
- The use of high resolution images in morphological operator learning
- Morphological operator design from training data
- Automatic labeling of handwritten mathematical symbols via expression matching
- Fast QR code detection in arbitrarily acquired images
- Remoção de compasso usando combinações de operadores heurísticos e treinados automaticamente
- Mathematical symbol hypothesis recognition with rejection option
- Matching based ground-truth annotation for online handwritten mathematical expressions
Informações sobre o DOI: 10.1109/CVAUI.2016.022 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2850332.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
