Image segmentation assessment from the perspective of a higher level task (2015)
- Authors:
- USP affiliated authors: LOPES, RUBENS MENDES - IO ; HIRATA, NINA SUMIKO TOMITA - IME
- Unidades: IO; IME
- DOI: 10.1109/SIBGRAPI.2015.46
- Subjects: PROCESSAMENTO DE IMAGENS; RECONHECIMENTO DE PADRÕES; PLÂNCTON
- Keywords: plankton image segmentation; holistic system evaluation; classification evaluation; plankton image classification; segmentation evaluation
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Piscataway
- Date published: 2015
- Source:
- Título: Proceedings
- Conference titles: Conference on Graphics, Patterns and Images - SIBGRAPI 2015
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
ATAUSINCHI FERNANDEZ, Mariela e LOPES, Rubens Mendes e HIRATA, Nina Sumiko Tomita. Image segmentation assessment from the perspective of a higher level task. 2015, Anais.. Piscataway: IEEE, 2015. Disponível em: https://doi.org/10.1109/SIBGRAPI.2015.46. Acesso em: 13 fev. 2026. -
APA
Atausinchi Fernandez, M., Lopes, R. M., & Hirata, N. S. T. (2015). Image segmentation assessment from the perspective of a higher level task. In Proceedings. Piscataway: IEEE. doi:10.1109/SIBGRAPI.2015.46 -
NLM
Atausinchi Fernandez M, Lopes RM, Hirata NST. Image segmentation assessment from the perspective of a higher level task [Internet]. Proceedings. 2015 ;[citado 2026 fev. 13 ] Available from: https://doi.org/10.1109/SIBGRAPI.2015.46 -
Vancouver
Atausinchi Fernandez M, Lopes RM, Hirata NST. Image segmentation assessment from the perspective of a higher level task [Internet]. Proceedings. 2015 ;[citado 2026 fev. 13 ] Available from: https://doi.org/10.1109/SIBGRAPI.2015.46 - Plankton image classification based on multiple segmentations
- Evaluation of transfer learning scenarios in plankton image classification
- A model for simulating user interaction in hierarchical segmentation
- The use of high resolution images in morphological operator learning
- Morphological operator design from training data
- Automatic labeling of handwritten mathematical symbols via expression matching
- Fast QR code detection in arbitrarily acquired images
- Remoção de compasso usando combinações de operadores heurísticos e treinados automaticamente
- Mathematical symbol hypothesis recognition with rejection option
- Matching based ground-truth annotation for online handwritten mathematical expressions
Informações sobre o DOI: 10.1109/SIBGRAPI.2015.46 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
