Projections of space curves and duality (2013)
- Authors:
- Autor USP: TARI, FARID - ICMC
- Unidade: ICMC
- DOI: 10.1093/qmath/har035
- Subjects: GEOMETRIA DIFERENCIAL; TEORIA DAS SINGULARIDADES
- Language: Inglês
- Imprenta:
- Publisher: Oxford University Press
- Publisher place: Oxford
- Date published: 2013
- Source:
- Título do periódico: Quarterly Journal of Mathematics
- ISSN: 0033-5606
- Volume/Número/Paginação/Ano: v. 64, n. 1, p. 281-302, 2013
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
SINHA, Raúl Oset; TARI, Farid. Projections of space curves and duality. Quarterly Journal of Mathematics, Oxford, Oxford University Press, v. 64, n. 1, p. 281-302, 2013. Disponível em: < http://dx.doi.org/10.1093/qmath/har035 > DOI: 10.1093/qmath/har035. -
APA
Sinha, R. O., & Tari, F. (2013). Projections of space curves and duality. Quarterly Journal of Mathematics, 64( 1), 281-302. doi:10.1093/qmath/har035 -
NLM
Sinha RO, Tari F. Projections of space curves and duality [Internet]. Quarterly Journal of Mathematics. 2013 ; 64( 1): 281-302.Available from: http://dx.doi.org/10.1093/qmath/har035 -
Vancouver
Sinha RO, Tari F. Projections of space curves and duality [Internet]. Quarterly Journal of Mathematics. 2013 ; 64( 1): 281-302.Available from: http://dx.doi.org/10.1093/qmath/har035 - Families of surfaces: focal sets, ridges and umbilics
- Extrema of principal curvature and symmetry
- Parabolic curves of evolving surfaces
- Ridges, crets an sub-parabolic lines of evolving surfaces
- On families of square matrices
- Projections of surfaces in 'R POT.4' to 'R POT.3' and the geometry of their singular images
- On the differential geometry of holomorphic plane curves
- On pairs of differential 1-forms in the plane
- Curves in the Minkowski plane and their contact with pseudo-circles
- Frame and direction mappings for surfaces in 'R POT. 3'
Informações sobre o DOI: 10.1093/qmath/har035 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas