Families of spherical surfaces and harmonic maps (2019)
- Authors:
- USP affiliated author: TARI, FARID - ICMC
- School: ICMC
- DOI: 10.1007/s10711-018-0389-3
- Subjects: GEOMETRIA DIFERENCIAL CLÁSSICA; GEOMETRIA GLOBAL; SINGULARIDADES; PROBLEMA DE CAUCHY
- Keywords: Bifurcations; Discriminants; Integrable systems; Loop groups; Parallels; Spherical surfaces; Constant Gauss curvature; Wave fronts
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título do periódico: Geometriae Dedicata
- ISSN: 0046-5755
- Volume/Número/Paginação/Ano: v. 201, n. 1, p. 203-225, Aug. 2019
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
BRANDER, David; TARI, Farid. Families of spherical surfaces and harmonic maps. Geometriae Dedicata, Dordrecht, v. 201, n. 1, p. 203-225, 2019. Disponível em: < http://dx.doi.org/10.1007/s10711-018-0389-3 > DOI: 10.1007/s10711-018-0389-3. -
APA
Brander, D., & Tari, F. (2019). Families of spherical surfaces and harmonic maps. Geometriae Dedicata, 201( 1), 203-225. doi:10.1007/s10711-018-0389-3 -
NLM
Brander D, Tari F. Families of spherical surfaces and harmonic maps [Internet]. Geometriae Dedicata. 2019 ; 201( 1): 203-225.Available from: http://dx.doi.org/10.1007/s10711-018-0389-3 -
Vancouver
Brander D, Tari F. Families of spherical surfaces and harmonic maps [Internet]. Geometriae Dedicata. 2019 ; 201( 1): 203-225.Available from: http://dx.doi.org/10.1007/s10711-018-0389-3 - Singularities of the geodesic flow on surfaces with pseudo-Riemannian metrics
- Minkowski symmetry sets of plane curves
- On vertices and inflections of plane curves
- Families of surfaces: height functions and projections to planes
- Families of surfaces in 'IR POT. 4'
- Sobre aplicações da teoria das singularidades à geometria diferencial e equações diferenciais
- Implicit differential equations from the singularity theory viewpoint
- Projections of surfaces in 'R POT.4' to 'R POT.3' and the geometry of their singular images
- Parabolic curves of evolving surfaces
- Extrema of principal curvature and symmetry
Informações sobre o DOI: 10.1007/s10711-018-0389-3 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
Referências citadas na obra
Arnold, V.: Wave front evolution and equivariant Morse lemma. Commun. Pure Appl. Math. 29, 557–582 (1976) |
---|
Arnold, V.: Indexes of singular points of 1-forms on manifolds with boundary, convolutions of invariants of groups generated by reflections, and singular projections of smooth surfaces. Uspekhi Mat. Nauk 34, 3–38 (1979) |
Arnold, V., Gusein-Zade, S., Varchenko, A.: Singularities of Differentiable Maps I, Monographs in Mathematics, vol. 82. Birkhäuser, Boston (1985) |
Arnold, V.I.: Singularities of Caustics and Wave Fronts, Mathematics and its Applications (Soviet Series), vol. 62. Kluwer Academic Publishers Group, Dordrecht (1990) |
Brander, D.: Spherical surfaces. Exp. Math. 25(3), 257–272 (2016). https://doi.org/10.1080/10586458.2015.1077359 |
Brander, D., Dorfmeister, J.F.: The Björling problem for non-minimal constant mean curvature surfaces. Commun. Anal. Geom. 18, 171–194 (2010) |
Bruce, J.: Wavefronts and parallels in Euclidean space. Math. Proc. Camb. Philos. Soc. 93, 323–333 (1983) |
do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Upper Saddle River (1976) |
Dorfmeister, J., Pedit, F., Wu, H.: Weierstrass type representation of harmonic maps into symmetric spaces. Commun. Anal. Geom. 6, 633–668 (1998) |
Fukui, T., Hasegawa, M.: Singularities of parallel surfaces. Tohoku Math. J. 2(64), 387–408 (2012) |
Gaffney, T.: The structure of $${T}{\cal{A}}(f)$$ T A ( f ) , classification and an application to differential geometry. Proc. Symp. Pure Math. 40, 409–427 (1983) |
Goryunov, V.V.: Singularities of projections of complete intersections. In: Current Problems in Mathematics, Vol. 22, Itogi Nauki i Tekhniki, pp. 167–206. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow (1983) |
Ishikawa, G., Machida, Y.: Singularities of improper affine spheres and surfaces of constant Gaussian curvature. Int. J. Math. 17, 269–293 (2006) |
Izumiya, S., Saji, K.: The mandala of Legendrian dualities for pseudo-spheres of Lorentz–Minkowski space and flat spacelike surfaces. J. Singul. 2, 92–127 (2010) |
Izumiya, S., Saji, K., Takahashi, M.: Horospherical flat surfaces in hyperbolic 3-space. J. Math. Soc. Jpn. 62, 789–849 (2010) |
Kabata, Y.: Recognition of plane-to-plane map-germs. Topol. Appl. 202, 216–238 (2016) |
Koenderink, J., van Doorn, A.: The singularities of the visual mapping. Biol. Cybern. 24, 51–59 (1976) |
Kokubu, M., Rossman, W., Saji, K., Umehara, M., Yamada, K.: Singularities of flat fronts in hyperbolic space. Pac. J. Math. 221, 303–351 (2005) |
Looijenga, E.: Structural stability of smooth families of $${C}^{\infty }$$ C ∞ -functions. Ph.D. Thesis. Universiteit van Amsterdam (1974) |
Martinet, J.: Singularities of Smooth Functions and Maps, LMS Lecture Note Series, vol. 58. Cambridge University Press, Cambridge (1982) |
Platonova, O.: Singularities of projections of smooth surfaces. Russ. Math. Surv. 39(1), 177–178 (1984) |
Pressley, A., Segal, G.: Loop Groups. Clarendon Press, Oxford (1986). Oxford Mathematical Monographs |
Rieger, J.: Families of maps from the plane to the plane. J. Lond. Math. Soc. 36, 351–369 (1987) |
Rieger, J., Ruas, M.: Classification of $${\cal{A}}$$ A -simple germs from $$k^n$$ k n to $$k^2$$ k 2 . Compos. Math. 79, 99–108 (1991) |
Saji, K.: Criteria for singularities of smooth maps from the plane into the plane and their applications. Hiroshima Math. J. 40, 229–239 (2010) |
Saji, K., Umehara, M., Yamada, K.: The geometry of fronts. Ann. Math. 2(169), 491–529 (2009) |
Wall, C.: Finite determinacy of smooth map-germs. Bull. Lond. Math. Soc. 13, 481–539 (1981) |
Whitney, H.: On singularities of mappings of euclidean spaces. I. Mappings of the plane into the plane. Ann. Math. (2) 62, 374–410 (1955) |
Wood, J.: Singularities of harmonic maps and applications of the Gauss–Bonnet formula. Am. J. Math. 99, 1329–1344 (1977) |